首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
双参数弹性地基上自由矩形中厚板问题分析尝试   总被引:1,自引:1,他引:1  
为了解决中厚板与双参数弹性地基的共同作用,基于弹性板理论,推导出中厚板弯曲的一种近似方法,求得了双参数地基上自由矩形中厚板弯曲问题的解析解,对数值算例编程求解,与Winklcr弹性地基上自由矩形中厚板的解进行比较,并与有限元解、差分解、福氏级数解、叠加解和复级数解进行对比,结果十分接近,证明该方法可行。  相似文献   

2.
弹性地基上四边自由矩形薄板振动分析有限积分变换法   总被引:1,自引:0,他引:1  
将弹性地基以Winkler模型模拟,利用双重有限余弦积分变换的方法推导出了弹性地基上四边自由矩形薄板的固有频率和振型的解析解表达式.由于在求解过程中不需要事先人为地选取挠度函数,而是从弹性地基上薄板的基本振动方程出发,直接利用数学的方法求解,使得问题的求解更加合理化.计算实例验证了所采用的方法以及所推导出的公式的正确性.  相似文献   

3.
4.
平板的非线性问题,除几何上的非线性效应外,还有物理上的非线性.探讨了弹性地基上矩形薄板的物理非线性问题.以整幂次多项式应力-应变本构关系为基础,根据Kirchheff-levy薄板理论和Iliushin小弹塑性形变理论,建立了非线性弹性材料矩形薄板的总势能表示式,得出用Ritz法求解所需的含待定参数的线性方程组,并以弹性地基承受均布荷载的四边简支矩形板为例,计算出总势能,进而得出所承受的荷载与板中间挠度的关系式.研究结果表明,物理非线性对挠度的影响可用1个3次方程表达,这对某些设计工程是不容忽视的.  相似文献   

5.
采用双参数弹性地基模型,通过弹性地基上矩形板网格划分,把网格结点的挠度微分方程化为差分方程.并引入边界条件,把地基板外的虚结点挠度用板上结点挠度表示,建立起包括各个结点挠度的差分方程组,编制相应的通用计算机程序,得到四边自由矩形板的解答.计算结果表明,该方法原理简单易懂,计算结果可靠,可在实际工程中运用.  相似文献   

6.
本文通过设定挠度函数的恰当的 Fourier—Bessel 级数形式,对双参数地基上受偏心集中力的自由边圆薄板的不对称弯曲问题作了解析分析。  相似文献   

7.
基于辛弹性的方法分析了变刚度矩形薄板的自由振动问题.假设矩形板的弯曲刚度沿板的长度方向呈指数函数变化而泊松比为常数,利用变分原理将其导入辛体系,并应用分离变量法和本征值展开给出了求解面内变刚度矩形薄板自振频率的一种解析方法.这种方法不同于传统的逆解法或者半逆解法,它不需要提前假设试函数,是一种更为理性的正向的求解方法.通过这种方法可以得到变刚度板自由振动的频率方程,数值算例表明该方法计算简便、结果精确,可以得到变刚度板的各阶自振频率.在此基础上,详细研究了不同边界条件下,梯度指数、泊松比以及长宽比对变刚度板自振频率的影响.  相似文献   

8.
在Winkler地基模型和双参数地基模型基础上,提出一种三参数地基模型.以双向三角级数作为矩形板挠度的试函数,采用最小二乘法,获得了三参数地基上四边简支矩形薄板挠度的计算表示式,并给出算例.计算结果表明,K2值对板的最大挠度具有一定影响,这为进一步研究地基上板提供了综合力学模型  相似文献   

9.
基于上三角Hamilton系统,研究了弹性地基上矩形薄板问题导出的Hamilton算子本征函数系的完备性,得到其本征展开的一种形式,并证明在另外一种形式下不完备.为此问题基于Hamilton系统的分离变量法提供了理论依据.  相似文献   

10.
本文采用有限傅里叶余弦变换法,建立了求解四边自由基础板的典型方程组.应用拉氏变换,给出六种特殊荷载作用下常微分方程式的特解,从而可以求出它们所对应的弯曲问题的精确解.文中给出两个算例.应用本文提供的方法,可以计算一些工程结构问题,例如水闸底板等.  相似文献   

11.
本文以附加补充项的Fourier级数作为挠度和剪力函数的模式,直接从Reissner模型建立的厚板弯曲的基本方程组出发,求解了Winkler地基上自由边矩形板的弯曲问题。文中给出了算例,并与经典薄板理论的相应解作了对比。  相似文献   

12.
弹性地基上四边自由厚矩形板的弯曲问题解   总被引:3,自引:0,他引:3  
在Reissner厚板理论基础是。利用功的互等定理法和迭加法求解集中载荷作用下,弹性地基上四边自由厚矩形板的弯曲问题,得到了完全一致的解析解,可见,功的互等定量法更简便易行。  相似文献   

13.
本文以叠加法提供在弹性地基上的自由矩形板的精确解。满足微分方程及自由边与自由角点条件,导致四组无穷联立方程及四个通常的联立方程。文中包括了两个数值例题。  相似文献   

14.
为了解决中厚板与粘弹性地基共同作用下的非线性振动问题,在Reissner-Mindlin一阶剪切变形板的理论基础上,运用pb-2瑞利-里兹法分析双参数粘弹性地基上四边自由矩形中厚板的非线性自由振动,探讨了板的尺寸参数、横向剪切因子、粘滞系数以及地基反应模量对板的振动特性产生的影响及其变化规律。并对数值算例进行编程求解,与文献实测数据进行对比,结果十分接近,证明了该方法的可行性。  相似文献   

15.
为研究不同高阶剪切变形理论下功能梯度梁的自由振动问题,假设功能梯度梁的材料参数按照组分的体积分数梯度变化,由哈密顿原理导出Winkler弹性地基上的功能梯度梁自由振动问题的运动方程.根据微分求积法原理,给出了考虑高阶剪切变形的功能梯度梁自由振动离散化代数方程.数值计算结果分析与讨论,研究了不同边界条件、弹性地基参数、功能梯度指数和结构几何参数对功能梯度梁固有频率的影响规律.该问题的研究可为功能梯度梁的设计与优化提供理论参考.  相似文献   

16.
非线性弹性矩形板的自由振动   总被引:8,自引:0,他引:8  
考虑材料的非线性效应,研究了一个四边简支非线性弹性矩形板的自由振动问题,计及静载变莆对板动力特征的影响,利用Galerkin原理,得到了板的关于时间部分的非线性动力方程及其相应的解析解,并对结果进行了分析讨论。  相似文献   

17.
基于经典薄板理论和力的平衡关系,建立非均匀Winkler-Pasternak弹性地基上正交各向异性矩形板自由振动的控制微分方程并进行无量纲化.采用微分变换法(DTM)将无量纲控制微分方程及其边界条件变换为等价的代数方程,得到含有无量纲固有频率的特征方程,数值研究4种不同边界正交各向异性矩形板自由振动前四阶无量纲固有频率特性.其数值结果退化为无地基正交各向异性矩形板、均匀Winkler弹性地基正交各向异性矩形板和均匀Winkler-Pasternak弹性地基正交各向异性矩形板情形,并与已有的精确解和级数解进行对比,表明DTM具有非常高的精度和很强的适用性.分析不同边界条件下地基变化参数和矩形板长宽比对正交各向异性矩形板自振频率的影响,并给出了Winkler-Pasternak弹性地基上对边固定对边简支正交各向异性矩形板的前四阶振型.  相似文献   

18.
本文应用功的互等定理求解弹性地基上受集中载荷作用的矩形板的挠曲面方程,给出了挠曲面方程的一般表达式,为这类问题的求解提供了一种新的有效方法。  相似文献   

19.
Pasternak地基上四边简支矩形薄板的弯曲问题   总被引:1,自引:0,他引:1  
在文克尔地基模型上提出了一种双参数弹性地基:Pasternak地基模型.以三角级数作为矩形板挠度试函数,采用最小二乘法,获得了Pasternak地基上四边简支矩形薄板挠度的计算表达式,并给出了算例;计算结果表明:剪切模量对板的最大挠度具有一定的影响,这为进一步研究地基上板提供了综合力学模型。  相似文献   

20.
本文提出一种分析薄板横向自由振动的新方法。此法是将有限条法与传递矩阵法结合使用,一般能将频率方程压缩到二阶,对于变厚板显得更为有效。根据本文的思路,可推广到曲线形桥板及斜文桥板的分析,也可推广于强迫振动的分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号