首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
针对复杂环境下,扩展目标跟踪量测存在漏检以及量测不精确、模糊的问题,引入区间分析技术,提出了一种基于箱粒子滤波的扩展目标伯努利滤波算法.算法首先采用伯努利随机有限集和泊松随机有限集分别描述扩展目标的状态和观测,然后将箱粒子滤波应用到扩展目标伯努利滤波算法,推导了适用于不确定量测的扩展目标伪似然函数和状态更新方程,并用伯努利箱粒子滤波递推地对扩展目标的状态进行估计跟踪.仿真实验表明:与扩展目标伯努利粒子滤波算法相比,所提算法在保证扩展目标跟踪性能的同时,有效减少了算法的计算时间.  相似文献   

2.
针对序列蒙特卡罗广义标签多伯努利滤波(SMC-GLMB)算法计算效率低、实时性差的问题,提出了箱粒子广义标签多伯努利滤波的目标跟踪(Box-GLMB)算法。该算法使用带标签的随机有限集描述多目标的状态,包括目标的位置和速度,并且对每个目标用互不相同的标签进行区分;然后利用箱粒子滤波算法近似单目标状态的概率密度,即用一组带权值的均匀分布拟合单目标状态概率密度;最后通过广义标签多伯努利滤波对多目标状态的概率密度进行预测与更新,从多目标状态后验概率密度中估计单目标的位置与速度,根据目标的标签可以实现航迹跟踪。BoxGLMB算法结合了箱粒子滤波与GLMB算法的优势,能够跟踪目标航迹,同时提高计算效率。仿真结果表明,Box-GLMB算法可以有效估计目标状态以及跟踪目标航迹,相比于SMC-GLMB算法,计算效率提升了62%。  相似文献   

3.
针对杂波环境下多扩展目标跟踪中数据关联过程复杂的问题,提出一种可同时估计扩展目标状态和目标数的高斯混合扩展目标多伯努利(GM-ET-MBer)滤波器,该滤波器无需对测量与扩展目标进行关联。首先采用伯努利随机有限集和泊松随机有限集分别描述扩展目标的状态和观测;然后结合扩展目标状态的预测信息,推导了扩展目标状态的更新方程,并在线性高斯条件下采用高斯混合方法递推地对扩展目标的状态进行估计跟踪。与高斯混合扩展目标概率假设密度(GM-ET-PHD)滤波器相比,GM-ET-MBer滤波器有效地提高了对目标数的估计精度。仿真结果表明,GM-ET-MBer滤波器和GM-ET-PHD滤波器对目标数估计的标准偏差分别为0.267 3和0.395 3,可知所提滤波器对目标数的估计更稳定。  相似文献   

4.
随着当前计算机性能的不断提高,粒子滤波算法日益受到人们的关注,因为其在非线性、非高斯系统和状态滤波等方面具有独到的优势,也被广泛应用到运动目标跟踪研究当中。  相似文献   

5.
粒子滤波主要利用粒子集来表示概率,可以用在任何形式的状态空间模型上.提出了一种基于粒子滤波的灰度图像目标跟踪方法,粒子滤波适合各种形式状态空间模型.算法目标特征采用了灰度直方图、灰度梯度直方图对灰度图像序列进行跟踪.粒子滤波跟踪算法有状态转移和状态观测两大重要模型.利用高权值的粒子替代低权值粒子这样的粒子重采样来保证粒子集的健壮性,得到目标最终位置.利用Matlab进行仿真证明了本文算法的有效性和稳健性.  相似文献   

6.
针对复杂场景下目标跟踪算法存在的跟踪目标丢失漂移等问题,提出一种粒子滤波框架下基于卷积神经网络(convolutional neural network,CNN)的目标跟踪算法.该算法采用CNN提取跟踪目标的高层语义特征,并引入离线训练方式,提高训练效率以及特征提取的泛化能力;利用粒子滤波算法框架,实现目标运动状态的有效估计;同时采用长时与短时两种更新策略,并引入困难样本挖掘的在线训练方式,以适应目标外观变化与背景干扰等复杂情况.仿真实验结果表明本文算法能有效适应遮挡、光照、剧烈运动等场景.与多个当前的跟踪算法在公开测试样本下进行了结果比较和分析,验证了本算法在解决跟踪目标丢失漂移等问题上的有效性.   相似文献   

7.
针对纯方位被动目标跟踪中粒子滤波算法固有的计算复杂性问题,提出了一种基于小波变换的粒子滤波算法(WMPF).对粒子权重进行小波多分辨率分解,通过设定阈值对高通部分的粒子权重进行滤波,再根据重构后的粒子权重去掉重复粒子,生成新的粒子集来近似后验概率密度函数,从而在保证滤波精度的同时大量减少粒子数,提高粒子滤波的计算效率.将WMPF算法与标准粒子滤波算法应用于具有非线性非高斯特点的纯方位目标跟踪问题,仿真结果表明,WMPF算法的跟踪精度与标准粒子滤波算法相当,计算效率却远高于标准粒子滤波算法,增强了跟踪的实时性,并且该算法有望进一步扩展粒子滤波的应用范围.  相似文献   

8.
针对未知杂波和检测概率的跟踪环境下,标准的标签多伯努利(LMB)算法对机动目标跟踪性能较差等问题,提出鲁棒标签多伯努利机动目标跟踪算法(R-LMB).首先建立真实目标、杂波与检测概率的增广空间模型,然后结合多模型(MM)系统,推导出基于蒙特卡罗(SMC)实现的带有状态标签和LMB元素标签的预测与更新方程.研究结果表明:在杂波和检测概率先验未知的情况下,所提出的算法可实现对目标数和目标状态的准确估计,同时在低检测概率和高杂波强度环境中仍可保证良好的多机动目标跟踪性能.  相似文献   

9.
针对密集杂波下现有的多机动目标跟踪算法性能衰减严重的问题,提出了一种标签多伯努利目标跟踪与分类算法。首先,引入类别信息对目标状态进行扩维;然后利用类别属性对目标机动模型转移密度进行修正,并推导新的状态转移密度函数,抑制了错误机动模型对目标状态预测的影响;同时,建立目标位置与属性的联合量测似然函数,增大了目标与杂波的区分度,从而增强杂波抑制能力;最后,基于多模型标签多伯努利滤波器框架推导了新的预测、更新方程。仿真实验结果表明:所提算法在高杂波环境下仍能对多机动目标进行有效跟踪,其目标数估计误差及最优子模式分配距离分别约为多模型概率假设密度联合检测、跟踪、分类滤波器的1/2和1/4,为多模型势平衡多伯努利联合检测、跟踪、分类滤波器的3/4和1/2。  相似文献   

10.
一种基于扩展Kalman滤波的多径估计算法   总被引:1,自引:0,他引:1  
定位系统中,噪声环境下的多径估计是消除多径干扰的前提。提出了一种基于扩展Kal-man滤波(EKF)的多径估计算法,可以有效的估计多径信号的时间延迟和幅度。分析了本地码估计偏差、EKF的估计初值、相关间距以及采样频率对多径估计性能的影响。结果表明,EKF在估计多径信号时,EKF初值不仅影响其收敛速度,而且EKF初值中的幅度初值决定其是否收敛。同时,EKF时间延迟估计误差可以通过提高采样频率和增加最大早晚码间距来减小。  相似文献   

11.
基于修正扩展卡尔曼序贯滤波的信息融合算法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对基于扩展卡尔曼滤波的融合算法存在滤波精度不高的问题,将修正扩展卡尔曼滤波算法与集中式序贯融合算法相结合,用于毫米波雷达和红外传感器目标融合跟踪。即先对毫米波雷达进行修正扩展卡尔曼滤波,再将滤波结果与红外传感器进行融合滤波。仿真结果表明该算法能够提高对机动目标的跟踪精度,增强跟踪系统对环境变化的适应能力。  相似文献   

12.
基于扩展Kalman滤波的声阵列定位数据融合算法   总被引:1,自引:0,他引:1       下载免费PDF全文
利用各阵元和目标相对于一中心阵元的几何关系建立目标运动方程,坐标变换方程和声阵列测量方程,并以此建立了声阵列目标定位模型。在此基础上提出了基于扩展Kalman滤波算法的目标定位数据融合算法。通过地面目标和空中目标的计算机仿真表明,本算法能够有效地克服由于智能雷布阵的随机性给智能雷定位数据估计带来的困难,对声阵列定位数据也能进行较好的融合,对提高定位精度有一定效果。  相似文献   

13.
针对复杂水下环境中声探测传感器获得的运动目标信息具有不确定性和模糊性等问题,提出了基于声探测传感器特点的高斯粒子滤波水下目标跟踪方法.基于粒子滤波理论,采用一阶自回归模型作为运动目标状态转移的依据,设计了由目标区域的面积特征和不变矩特征相融合的观测模型,解决了目标跟踪中的粒子权值的选取问题,克服了传统粒子滤波重采样问题,提高了复杂环境下目标跟踪结果的准确率.展示了应用高斯粒子滤波实现水下目标跟踪的过程.试验结果表明,该方法具有较好的鲁棒性和实时性,是复杂水下环境中目标跟踪的一种高效可行的新方法.  相似文献   

14.
本文针对在视频追踪过程中出现的目标遮挡问题,提出了一种基于稀疏表达的混合模型的粒子滤波跟踪算法.这种混合模型采用了基于全局模板和基于局部的描述方式,在全局模板的描述方式中,将目标模板由目标候选表示出来,线性表示的系数满足稀疏性约束条件,其系数作为目标候选的权重.同时在局部描述模型中,构造SIFT特征的完备字典,将局部模型稀疏表示成直方图形式,然后对遮挡部分进行处理,设置目标被遮挡部分的直方图权重,得到最终的局部模型直方图表示.最后本文将两种模型合理的融合到一块,得到一种联合的新的模型应用于目标跟踪,实验证明该方法有效的完成了视频中的目标跟踪.  相似文献   

15.
基于多模型GGIW-CPHD滤波的群目标跟踪算法   总被引:1,自引:0,他引:1  
针对伽马高斯逆威夏特-概率假设密度(GGIW-CPHD)滤波算法跟踪机动群目标误差较大的问题,提出基于最适高斯近似(BFG)和强跟踪的多模型GGIW-CPHD滤波的群跟踪算法.首先,在对群目标量测分割的基础上,采用BFG方法实现CPHD预测阶段的多模型融合.其次,利用强跟踪滤波(STF)中的渐消因子来修正GGIW分量的预测协方差矩阵.最后,在CPHD更新阶段完成群质心和扩展状态估计的基础上,利用多个模型对应的似然函数完成模型概率的更新.实验结果表明:所提算法能够在GGIW-CPHD框架下实现多个模型的交互,有效降低机动阶段时群目标的状态估计误差,并能有效处理群目标的合并和衍生情况.  相似文献   

16.
基于相关滤波和卷积神经网络的目标跟踪算法   总被引:2,自引:0,他引:2  
在目标跟踪系统中,获得目标的良好表征是确定目标跟踪性能的关键,因此提出一种基于相关滤波和卷积神经网络的目标跟踪算法;该算法首先在各视频场景内预先选定可清晰区分目标外观的参考区域块用以构造训练样本,并构建了两路不完全对称但权值共享的卷积神经网络;该卷积神经网络使得参考区域外目标的输出特征尽可能与参考区域内目标的输出特征相似,以便于获得参考区域内目标的良好表征,并在其中一路加入了相关滤波模块,实现了卷积网络与相关滤波的结合;实验结果验证了该算法的可行性。  相似文献   

17.
李成功  曹宁  王娴珏 《科学技术与工程》2012,12(21):5337-5341,5346
针对复杂背景下单一的颜色特征不能准确跟踪目标的问题,提出了一种改进的目标跟踪算法。该算法利用跟踪目标的颜色特征和运动边缘特征来表示目标。在粒子滤波的框架下融合特征信息从而进行目标跟踪,能够有效地避免单一颜色特征在跟踪过程中受到相似背景、遮挡等问题的干扰。通过与基于单一颜色特征跟踪实验误差数据的分析,实验结果表明该算法在复杂背景以及目标遮挡等情况下能达到较好的目标跟踪效果,实现目标的准确跟踪。  相似文献   

18.
近年来,相关滤波目标跟踪在视觉领域中受到了越来越多的关注,并取得了令人瞩目的成果。该文对目前基于相关滤波的跟踪算法进行分析研究,首先提出了一个通用的相关滤波目标跟踪框架,然后讨论几种经典的跟踪算法,并对其改进算法进行分析归类,主要分为尺度更新、背景遮挡;最后通过仿真实验对几种算法性能进行分析,并提出相关滤波跟踪技术存在的问题。  相似文献   

19.
概括了在目标跟踪中常用的几种滤波算法,从目标模型建立到滤波器的算法原理进行了分析和归纳。这些算法各有特点.在不同的情况下它们的跟踪精度、实时性有很大差异。针对一种典型的目标运动,对其中有代表性的算法进行数据仿真,分析和验证了这几种典型滤波算法各项性能的差别。  相似文献   

20.
针对复杂环境下雷达目标跟踪系统易受外界干扰引入噪声污染分布问题,为了保证系统实时可靠,提出了一种基于新息自适应的扩展卡尔曼滤波雷达目标跟踪算法(innovation-based adaptive extended Kalman filter, IAEKF)。通过建立系统新息统计特性,构造系统与量测噪声函数,将新息协方差直接引入滤波器增益矩阵计算,在不增加计算代价的同时,改善算法的自适应性。仿真实验表明,在雷达测量系统受时变噪声污染分布影响下,IAEKF算法相比EKF算法跟踪精度高,算法可行且有效,具有一定的工程研究价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号