首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 354 毫秒
1.
采用一步法成功制备了氧化锌/石墨相氮化碳(ZnO/g-C_3N_4)复合光催化材料,通过XRD,SEM,TEM,FT-IR和UV-vis DRS对所得样品的微观形貌和吸光特性进行了表征.结果表明,ZnO颗粒均匀分布在片状g-C_3N_4表面上,ZnO/g-C_3N_4最大光吸收边的位置相对于纯相ZnO发生了明显的红移.利用光催化降解甲基橙溶液评估了所得样品的光催化活性,发现ZnO/g-C_3N_4复合材料的光催化效率远高于纯相ZnO和纯相g-C_3N_4,分别达到ZnO的14倍和g-C_3N_4的9倍.复合材料光催化性能得以提升的主要原因有两点:复合样品材料具有比纯相ZnO更大的光吸收范围,提高了太阳光的利用率;ZnO纳米颗粒与g-C_3N_4紧密耦合形成的异质结构有效促进了光生电子-空穴对的分离.  相似文献   

2.
采用热聚合-溶剂热法得到表面负载型g-C_3N_4/TiO_2复合材料,其结构组成、形貌和光电性质通过XRD、TEM、HRTEM、FT-IR、BET和UV-vis测试分析.结果表明TiO_2纳米小颗粒负载于微米级片状g-C_3N_4表面,形成稳定的g-C_3N_4/TiO_2固-固异质结构,扩大了光响应范围、显著提高光生载流子的分离效率.在可见光催化还原水中Cr(Ⅵ)的过程中,g-C_3N_4的质量百分含量是影响光催化活性的重要因素,g-C_3N_4/TiO_2-C具有最高的光催化活性和良好的稳定性.依据实验结果和光电流响应实验给出光催化反应机理.  相似文献   

3.
【目的】以无水乙醇和尿素为原料,通过一步热聚合法制备得具有特殊物化性能的碳掺杂g-C_3N_4光催化剂。【方法】通过X射线衍射(XRD)、紫外-可见漫反射光谱(UV-Vis DRS)、荧光光谱(PL)、N2吸附等手段对样品进行了表征分析。【结果】碳掺杂g-C_3N_4样品的可见光催化活性明显高于未改进g-C_3N_4,也高于用去离子水辅助改进的g-C_3N_4样品。【结论】可见光催化活性增强的原因可以归因于光吸收能力增强、比表面积和孔容增大和光生载流子复合率减小等因素的协同作用。提供了一种简易和环境友好的方法制备高活性有机光催化剂的新思路,为环境污染净化提供了一种高效降解的新材料。  相似文献   

4.
采用水热法制备了二氧化钛纳米管(TNTAs),以尿素为前驱体采用煅烧法制备了g-C_3N_4,然后通过超声制备了TNTAs/g-C_3N_4复合物,并研究了复合物对罗丹明B(RhB)的光催化降解活性.结果表明:TNTAs与g-C_3N_4的复合,增强了对可见光的利用率,复合物中异质结的形成,有效抑制了催化剂中光生电子和空穴对的复合,TNTAs/g-C_3N_4复合物光催化降解RhB的性能得到了明显提高,其中TNTAs/g-C_3N_4-1∶2具有最高的光催化降解活性.  相似文献   

5.
以g-C_3N_4和表面沉积Ag的TiO_2微球为原料,超声混合制备了g-C_3N_4/TiO_2@Ag复合材料.采用FT-IR,XRD,XPS,SEM,DRS,UV-Vis和PL等表征手段对材料的结构、形貌及光学性能进行了表征,在可见光照射下测试了其对亚甲基蓝溶液(MB)的光催化活性.结果表明,该复合材料分离光生电子与空穴效率高,对MB的光降解率为97.4%,高于TiO_2@Ag(65.5%)和g-C_3N_4/TiO_2(89.7%)的降解率.  相似文献   

6.
在580℃下热解单氰胺的方法合成石墨型碳氮化合物g-C_3N_4,并采用X-射线衍射(XRD),扫描电子显微镜(SEM),紫外可见漫反射(UV-Vis DRS),红外光谱(FT-IR),光致发光光谱(PL)对该催化剂进行了表征.通过对罗丹明B(Rhodamine B,RhB)及水杨酸(Salicylic acid,SA)的降解来研究其催化活性,同时探讨了光催化降解RhB体系中g-C_3N_4的用量和溶液pH对RhB降解的影响.结果表明,在可见光(λ≥420nm)照射下,g-C_3N_4为1.2g/L,pH 5.35时,g-C_3N_4对RhB的光降解活性最好,150min后可使RhB褪色完全.在光催化反应条件下降解SA,45h时降解率达到35.09%.采用外加异丙醇、苯醌、EDTA等捕获剂试验,推测其催化机理主要为超氧自由基(O2·-)氧化历程.  相似文献   

7.
丙三醇与三聚氰胺的混合物通过热聚合法制得富碳类石墨相氮化碳(g-C_3N_4),着重研究丙三醇加入量对样品光催化性能的影响。采用X线衍射仪(XRD)、傅里叶红外光谱仪(FT-IR)、透射电子显微镜(TEM)分析样品的晶体结构、化学组成和形貌,紫外-可见分光光度计(UV-Vis)测定样品的光谱吸收性能,荧光光谱仪(PL)测试样品的荧光性能。结果表明:三聚氰胺缩聚形成g-C_3N_4,丙三醇碳化形成的无定形碳负载于g-C_3N_4表面。无定形碳的引入可以有效促进g-C_3N_4的可见光吸收,丙三醇的最佳加入量为0.2%(质量分数),此富碳g-C_3N_4样品可在200 min内降解90%的Rh B,是纯g-C_3N_4降解量的1.4倍。样品具有较好的稳定性,4次循环实验后依然保持92%以上的反应活性。  相似文献   

8.
采用热聚合法制备石墨相氮化碳(g-C_3N_4),超声法制备还原氧化石墨烯/石墨相氮化碳(RGO/g-C_3N_4)二元复合光催化剂,再利用共沉淀法在二元复合光催化剂RGO/g-C_3N_4表面负载AgI,制得g-C_3N_4/RGO/AgI复合光催化剂。运用XRD、SEM、FT-IR、UV-Vis和FTIR等手段对材料进行表征,以罗丹明B(Rh B)作为目标物,用g-C_3N_4/RGO/AgI进行光催化降解实验。结果表明:光照210min后,g-C_3N_4/RGO/AgI光催化剂对Rh B的降解率为96. 52%。相同条件下,RGO/g-C_3N_4和gC_3N_4/AgI对RhB的降解率分别为58. 28%和73. 80%。g-C_3N_4/RGO/AgI复合光催化剂具有优异的光催化性能。  相似文献   

9.
为了使g-C_3N_4光生电子和空穴容易复合,改善可见光响应低等缺点,该实验中采用溶胶-凝胶法将g-C_3N_4和α-Fe_2O_3进行复合形成g-C_3N_4异质结光催化剂,再采用光沉积法将Ag沉积在α-Fe_2O_3/g-C_3N_4上,构建Z型机制Ag/α-Fe_2O_3/g-C_3N_4催化剂材料,改善光生电荷的分离和传输能力及可见光响应,进一步增强其光催化降解污染物活性.最后通过XRD、FT-IR、XPS、SEM、TEM、紫外-可见漫反射光谱表征光催化剂结构和性能,并以染料罗丹明B溶液模拟废水,研究催化剂的降解动力学特性,通过活性基团捕获实验探究光催化机制.实验结果表明:(1)α-Fe_2O_3和g-C_3N_4复合形成异质结,当α-Fe_2O_3负载量为3%时,α-Fe_2O_3/g-C_3N_4光催化性能比纯的g-C_3N_4有了明显的提高,光催化性能降解罗丹明B达到79%.(2)Ag负载在α-Fe_2O_3/g-C_3N_4,当Ag的负载量为3%时,在可见光下3.5 h能够对罗丹明B达到95%以上的降解.(3)Ag/α-Fe_2O_3/g-C_3N_4增强的光催化剂性归因于α-Fe_2O_3和g-C_3N_4形成异质结以及Ag加入后形成Z型异质结结构.  相似文献   

10.
为了验证可见光下Yb_2O_3/g-C_3N_4光催化剂分别降解水体中的苯酚和盐酸四环素(TTCH)的光催化效果.本研究采用热解和超声混合方法制备Yb_2O_3/g-C_3N_4光催化剂,并用多种仪器进行性能表征.Yb_2O_3/g-C_3N_4在可见光下对20 mg/L苯酚和TTCH的降解率分别为80.83%和85.01%;Yb_2O_3/g-C_3N_4复合光催化剂的光催化性能明显提高,其降解苯酚的速率是g-C_3N_4的3.80倍,降解TTCH的速率g-C_3N_4的6.57倍.结果表明,Yb_2O_3/g-C_3N_4具有更加高效的可见光响应能力,且具备更好的光催化性能.  相似文献   

11.
以尿素为初始原料,用高温热解方法制备纳米片层结构的石墨相氮化碳(g-C_3N_4),并通过X射线衍射(XRD)、X光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)及Fourier变换红外光谱(FTIR)对样品的结构和形貌进行表征,用罗丹明对样品的光催化性能与循环催化性能进行测试.结果表明,g-C_3N_4纳米片具有较高的光催化活性及循环催化性能.  相似文献   

12.
为提高g-C_3N_4的光催化活性,采用光诱导法将银纳米颗粒与g-C_3N_4复合在一起制得氮化碳负载的银纳米催化剂(Ag/g-C_3N_4)。产品分别采用紫外-可见分光光度计、X射线衍射仪与傅里叶变换红外光谱仪进行表征,其光催化活性通过在可见光照射下降解罗丹明B得出。结果表明,光诱导法可以将硝酸银还原成单质银并将其负载到氮化碳表面上,只用0.1 g的Ag/g-C_3N_4对罗丹明B能达到91.6%的降解率,并且循环使用5次后还有高达87.9%的降解率。Ag/g-C_3N_4具有催化活性高、耗量少、稳定性好的特点。  相似文献   

13.
该文以三聚氰胺和乙酰丙酮钼(C10H14MoO6)为前驱体,通过简单的热缩聚法成功地制备出钼(Mo)掺杂石墨氮化碳(g-C_3N_4)催化剂(Mo/g-C_3N_4)。采用X-射线衍射光谱(XRD)、傅里叶转换红外光谱(FT-IR)、X-射线光电子能谱(XPS)等分析手段对催化剂的结构和光学特性进行表征,并通过可见光催化降解罗丹明B(RhB)实验来研究催化剂的光催化性能。研究结果表明,当Mo掺杂量为0.2%时,Mo/g-C_3N_4呈现出最佳的光催化降解效果,其降解速率为57.6%,是g-C_3N_4的2.5倍。Mo金属的掺杂扩大了g-C_3N_4可见光吸收范围,提高光生电子-空穴的分离效率,有利于光催化活性的提升。该研究对实际中工业有机污染物的治理提供一定的理论指导意义。  相似文献   

14.
采用超声——浸渍法制备了磷钨酸/g-C_3N_4(PWCN)复合光催化剂,并利用XRD,IR及UV-Vis吸收光谱对其进行了表征.考察了其在紫外光和太阳光照射下催化降解甲基橙的性能,并对其重复使用性、降解动力学及光催化机理进行研究.结果表明:复合材料的光响应与PW相比发生红移,且吸光值增大.在接受紫外光和可见光照射2h条件下,该复合物光催化剂对甲基橙的光降解率分别达到96.81%和80.24%,同时具有良好的循环稳定性.PW对g-C_3N_4光生电子的捕获是提高复合物催化活性的主要原因.  相似文献   

15.
利用超声剥离法将块体g-C_3N_4剥离成少层g-C_3N_4,之后与TiO_2进行复合并将所得产物进行二次高温煅烧,得到一种界面间距更小,光生电子传递速率高,光催化性能强的TiO_2/g-C_3N_4的光催化剂。通过XRD,SEM,TEM和FT-IR对其结构进行表征,发现TiO_2是以化学键的形式均匀地附着在少层g-C_3N_4表面;UV-vis和PL分析表明,该催化剂实现了紫外区到可见区的全覆盖吸收,并能有效地抑制光生电子和空穴的复合;降解实验和分解水制氢实验表明TiO_2的负载量为3%时其光催化性能最好,100 min时对罗丹明B的降解率达到87.7%,光催化分解水制氢速率高达68.62μmol h~(-1)。探讨总结了该复合物的光催化机理。  相似文献   

16.
本研究制备了Bi_2MoO_6/g-C_3N_4 Z型异质结光催化剂。通过XRD和紫外-可见漫反射光谱表征来测试样品的晶体结构和光吸收性能等性质。结果表明:掺杂Bi_2MoO_6形成异质结后,g-C_3N_4的禁带宽度变窄,增强了光催化活性。以罗丹明B为目标污染物,在可见光下研究了pH对Bi_2MoO_6/g-C_3N_4的光催化降解性能的影响,研究显示Bi_2MoO_6/g-C_3N_4光催化性能优于g-C_3N_4,在光照1 h内基本可将污染物100%完全降解。最后通过捕获实验验证在光催化过程中起主要作用的是O~-_2·自由基,并推测出可能的光催化机理。  相似文献   

17.
石墨相氮化碳(g-C_3N_4)具有较好的物理化学稳定性、合适的能带结构和良好的可见光吸收性能,因而在光催化领域得到了广泛关注.作为异相催化剂,高比表面积可以提供较多的反应位点,增加反应物的接触,改善传质,从而促进催化性能的提升.本文综述了高比表面积g-C_3N_4的合成方法,介绍了两种增加g-C_3N_4比表面积的途径:(1)模板法制备多孔g-C_3N_4;(2)剥离法制备薄层g-C_3N_4纳米片.本文对高比面积g-C_3N_4的光催化应用也做了相应的介绍,并对g-C_3N_4的发展前景做了展望.  相似文献   

18.
以木质素为原料,采用磷酸辅助的一步水热法制备了木质素基石墨烯量子点(lignin-based graphene quantum dots,LGQDs),对其进行分析与表征,研究磷酸掺杂量对LGQDs性能的影响。将LGQDs与g-C_3N_4进行复合,构建了g-C_3N_4/LGQDs复合光催化剂,进一步评价了该复合光催化剂对亚甲基蓝(MB)的光催化降解性能。研究结果表明:LGQDs具有明亮的蓝色荧光和良好的水溶性,这主要与表面丰富的官能团和磷元素的掺杂有关;在不同的p H环境下,LGQDs具有不同的荧光强度,且不同磷酸掺杂量影响了LGQDs荧光强度的稳定性;g-C_3N_4/LGQDs复合光催化剂对MB具有良好的光催化降解能力,降解率可达96.5%,相较于纯g-C_3N_4增幅为154.6%.  相似文献   

19.
本研究以甲硝唑为污染底物,分析ZnIn_2S_4/g-C_3N_4光催化剂的光催化降解性能、降解动力学和反应催化机理.采用水热和超声相结合的方法将ZnIn_2S_4负载到g-C_3N_4上,通过改变ZnIn_2S_4负载量得到不同ZnIn_2S_4含量的ZnIn_2S_4/g-C_3N_4异质结光催化剂.利用多种表征手段分析样品的结构、组成、形貌和光吸收等.实验结果表明ZnIn_2S_4/g-C_3N_4的结构是分层异质结构,当ZnIn_2S_4负载量为30%时,ZnIn_2S_4/g-C_3N_4催化剂的催化活性最佳,氙灯下2 h对甲硝唑的光催化降解率达到了90%.  相似文献   

20.
以尿素为前驱体,以不同的反应温度、升温速度、保温时间制得g-C_3N_4,探索制备g-C_3N_4的最优条件。结果表明:制备g-C_3N_4的最优条件为反应温度500℃、升温速度3℃/min、保温时间2 h;将最优条件下制得的g-C_3N_4在模拟太阳光环境中进行光催化测试,随着时间的延长,降解率逐渐提高;光照4 h的降解率达93.2%,这表明g-C_3N_4具有良好的光催化特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号