首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
现实生活中大部分的经济数据不仅会随着时间的推移显示出一定的长期趋势,往往还会因为季节性因素而呈现出周期变化,因此,对于这种既具有倾向性变动趋势又有季节性变动的时间序列的预测就成为了统计预测的重要内容之一。因为预测方法选择的多样性,主要讨论温特线性与季节性指数平滑法,自适应过滤法和ARIMA模型拟合法这3种重要且比较典型的预测方法,通过比较3种方法的优劣,有助于在实际预测中预测方法的正确选择。  相似文献   

2.
3.
基于云模型的时间序列预测   总被引:15,自引:0,他引:15  
在日常生活中广泛存在着各种时间序列数据,发现时间序列知识、对时间序列进行预测正成为数据挖掘与知识发现的重要内容.首先提出了基于云模型的时间序列预测机制,该机制以云理论为知识表示的理论基础,提出了两种预测知识:准周期变化规律和当前趋势,并综合两种不同粒度的预测知识实现了时间序列的预测.然后着重于运用云模型进行知识表达、定量数值与定性知识的转换以及综合不同时间粒度的知识进行时间序列预测.  相似文献   

4.
结合频谱时同序列的特点,选择ARIMA模型作为预测模型,通过ARIMA模型算法的流程分析,初步论证预测模型及预测精度的可靠性.  相似文献   

5.
以时间序列模型为基础,对未来中国经济发展和工资增长的形势进行分析,经过合理的假设和筛选,确立工资的6个影响因素,继而引入国家效应、企业效应和个人效应3个影响因子。运用SPSS的相关性分析,对影响山东省职工年平均工资的因素进行分析,分别研究了国家效应、企业效应和个人效应与该地区年平均工资的关系,进一步运用SPSS,综合分析这3个因素对该地区平均工资的影响。最后,通过综合国家效应、企业效应和个人效应这3个因素建立的时间序列自回归模型,得到2011—2035年山东省职工年平均工资的预测值。通过时间序列的自回归模型预测值与实际值的Sequence Plot曲线,证实模拟效果较好,预测值符合模拟趋势。  相似文献   

6.
医院门诊量分析与预测对医疗资源管理和为高质量医疗护理提供决策有重要作用.当前在门诊量分析与预测方面的研究还没引起足够重视,且研究主要集中在门诊量预测的计算方法,缺少全面深入的数据分析和规律挖掘.为此提出构建ARMAX模型、神经网络模型和ARMAX模型与神经网络的混合模型,用来描述医院门诊量的线性和非线性特征.以时间序列模型全面深入地分析厦门市医院门诊量日度数据的规律,研究发现,医院门诊量有显著的上升趋势、周内日效应以及很强的序列自相关性.通过样本外预测比较发现,采用混合模型进行预测取得的预测结果较好,这是由于混合模型能够同时获取门诊量数据的线性部分和非线性部分,数据信息比较完整.  相似文献   

7.
科学的预测电力负荷数据可以更有效地进行电力生产规划和电力供需调整。本文基于代顿市2017年度电力负荷数据构建ARIMA模型,并使用该模型预测2018年的第一个月。并与1月份的实际数据进行比较,验证了模型的真实性和可靠性。研究结果表明:ARIMA(1,1,1)具有良好的预测结果和准确的预测精度。平均预测误差约为4.00%,达到了最小误差的预测效果。  相似文献   

8.
陈卫雄 《科学技术与工程》2021,21(35):15203-15208
为分析青藏铁路路基高程不规则变形,通过建立高程—时间响应模型,基于Box-Jenkins建模方法,确定时间序列模型阶数,根据AIC准则,选取适合的时间序列模型,最后给出批量预测全部路基测点高程的算法步骤。研究了青藏铁路路基高程随时间变形规律问题。结果表明:以2010年—2018年每月青藏铁路K1425+050处左侧路基高程数据为例,建立了ARMA(2,1,1)模型,并以2019年数据作为验证集,模型通过了模型适应性检验,证明了模型的有效性和准确性;总结了青藏铁路沿线各测点至2023年12月预测值中可能出现重大变形以及测点左右两侧路基高程差值出现较大差值的10个危险点;在测点K1476+600附近,路基两侧出现明显长距离的差异。可见本模型能准确预测青藏铁路路基高程的变化,对于工程养护维修具有一定借鉴意义。  相似文献   

9.
将RFDE(Retarted Functional Differential Equation)和NFDE(Neutral Functional DifferentialEquation)引入到时间序列单元分析预测中,建立了RFDE和NFDE进行预测的理论基础和几个新的预测方法,并解决了其它一些预测方法难以解决的预测问题。  相似文献   

10.
张永琦  杨建常 《科技资讯》2023,(10):240-243
针对时间序列预测中单一模型存在预测精度不高和预测稳定性较差的问题,采用残差赋权方法对单一模型进行组合,并以此为基础,提出基于残差赋权改进的自适应变权组合方法。该方法的基本思想是基于当前时刻的预测结果自适应调整其组成模型的权重值,利用不同的单一模型进行优势互补。将其应用到组合模型中,以实现提高模型的预测精度与稳定性。实验结果表明,该组合方法能有效改善预测稳定性不足的问题,以及进一步提高模型的预测精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号