首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Changes in the structure and number of synapses modulate learning, memory and cognitive disorders. Ubiquitin-mediated protein modification is a key mechanism for regulating synaptic activity, though the precise control of this process remains poorly understood. RING finger protein 13 (RNF13) is a recently identified E3 ubiquitin ligase, and its in vivo function remains completely unknown. We show here that genetic deletion of RNF13 in mice leads to a significant deficit in spatial learning as determined by the Morris water maze test and Y-maze learning test. At the ultrastructral level, the synaptic vesicle density was decreased and the area of the active zone was increased at hippocampal synapses of RNF13-null mice compared with those of wild-type littermates. We found no change in the levels of SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptor) complex proteins in the hippocampus of RNF13-null mice, but impaired SNARE complex assembly. RNF13 directly interacted with snapin, a SNAP-25-interacting protein. Interestingly, snapin was ubiquitinated by RNF13 via the lysine-29 conjugated polyubiquitin chain, which in turn promoted the association of snapin with SNAP-25. Consistently, we found an attenuated interaction between snapin and SNAP-25 in the RNF13-null mice. Therefore, these results suggest that RNF13 is involved in the regulation of the SNARE complex, which thereby controls synaptic function.  相似文献   

3.
4.
Ubiquitination, the covalent attachment of ubiquitin to a target protein, regulates most cellular processes and is involved in several neurological disorders. In particular, Angelman syndrome and one of the most common genomic forms of autism, dup15q, are caused respectively by lack of or excess of UBE3A, a ubiquitin E3 ligase. Its Drosophila orthologue, Ube3a, is also active during brain development. We have now devised a protocol to screen for substrates of this particular ubiquitin ligase. In a neuronal cell system, we find direct ubiquitination by Ube3a of three proteasome-related proteins Rpn10, Uch-L5, and CG8209, as well as of the ribosomal protein Rps10b. Only one of these, Rpn10, is targeted for degradation upon ubiquitination by Ube3a, indicating that degradation might not be the only effect of Ube3a on its substrates. Furthermore, we report the genetic interaction in vivo between Ube3a and the C-terminal part of Rpn10. Overexpression of these proteins leads to an enhanced accumulation of ubiquitinated proteins, further supporting the biochemical evidence of interaction obtained in neuronal cells.  相似文献   

5.
6.
Since being discovered and intensively studied for over a decade, Smad ubiquitylation regulatory factor-1 (Smurf1) has been linked with several important biological pathways, including the bone morphogenetic protein pathway, the non-canonical Wnt pathway, and the mitogen-activated protein kinase pathway. Multiple functions of this ubiquitin ligase have been discovered in cell growth and morphogenesis, cell migration, cell polarity, and autophagy. Smurf1 is related to physiological manifestations in terms of age-dependent deficiency in bone formation and invasion of tumor cells. Smurf1-knockout mice have a significant phenotype in the skeletal system and considerable manifestations during embryonic development and neural outgrowth. In depth studying of Smurf1 will help us to understand the etiopathological mechanisms of related disorders. Here, we will summarize historical and recent studies on Smurf1, and discuss the E3 ligase-dependent and -independent functions of Smurf1. Moreover, intracellular regulations of Smurf1 and related physiological phenotypes will be described in this review.  相似文献   

7.
Summary Colicin E3 increased the capacity of peritoneal exudate leucocytes to reduce iodo-nitro-tetrazolium-chloride to formazane. This effect was directly dependent on its concentration within the range 103–105 lethal units per cell. In control experiments, dectran C exerted no influence on the rate of this activity and colicin E3 did not convert INT to formazane.  相似文献   

8.
9.
This review highlights progress in dissecting how plant nitrate reductase (NR) activity is regulated by Ca2+, protein kinases, protein kinase kinases, protein phosphatases, 14-3-3 proteins and protease(s). The signalling components that regulate NR have also been discovered to target other enzymes of metabolism, vesicle trafficking and cellular signalling. Extracellular sugars exert a major impact on the 14-3-3-binding status and stability of many target proteins, including NR in plants, whereas other stimuli affect the regulation of some targets and not others. We thus begin to see how selective or global switches in cellular behaviour are triggered by regulatory networks in response to different environmental stimuli. Surprisingly, the question of how changes in NR activity actually affect the rate of nitrate assimilation is turning out to be a tough problem.  相似文献   

10.
11.
Regulation and termination of NADPH oxidase activity   总被引:11,自引:0,他引:11  
NADPH oxidase of phagocytes plays a crucial role in host defense by producing reactive oxygen species (ROS) that are intended to kill invading microbes. Many other cells produce ROS for signaling purposes. The respiratory burst oxidase in human neutrophils is the main but not exclusive subject of this review, because it is archetypical and has been studied most extensively. The activity of this enzyme must be controlled in phagocytes to prevent collateral damage, and in non-phagocytic cells to perform its signaling role. With many stimuli, NADPH oxidase activity is transient. Various forms of evidence indicate that sustained NADPH oxidase activity requires continuous renewal of the enzyme complex, without which rapid deactivation occurs. This review considers mechanisms that have been proposed to terminate the phagocyte respiratory burst. Changes in the phosphorylation state of p47(phox) and in the species of nucleotide bound to Rac seem to be the dominant factors in deactivation.  相似文献   

12.
13.
Regulation of cyclin-Cdk activity in mammalian cells   总被引:33,自引:0,他引:33  
Cell cycle progression is driven by the coordinated regulation of the activities of cyclin-dependent kinases (Cdks). Of the several mechanisms known to regulate Cdk activity in response to external signals, regulation of cyclin gene expression, post-translational modification of Cdks by phosphorylation-dephosphorylation cascades, and the interaction of cyclin/Cdk complexes with protein inhibitors have been thoroughly studied. During recent years, much attention has also been given to mechanisms that regulate protein degradation by the ubiquitin/proteasome pathway, as well as to the regulation of subcellular localization of the proteins that comprise the intrinsic cell cycle clock. The purpose of the present review is to summarize the most important aspects of the various mechanisms implicated in cell cycle regulation.  相似文献   

14.
15.
Ubiquitination, the covalent attachment of ubiquitin to proteins, by E3 ligases of the HECT (homologous to E6AP C terminus) family is critical in controlling diverse physiological pathways. Stringent control of HECT E3 ligase activity and substrate specificity is essential for cellular health, whereas deregulation of HECT E3s plays a prominent role in disease. The cell employs a wide variety of regulatory mechanisms to control HECT E3 activity and substrate specificity. Here, we summarize the current understanding of these regulatory mechanisms that control HECT E3 function. Substrate specificity is generally determined by interactions of adaptor proteins with domains in the N-terminal extensions of HECT E3 ligases. These N-terminal domains have also been found to interact with the HECT domain, resulting in the formation of inhibitory conformations. In addition, catalytic activity of the HECT domain is commonly regulated at the level of E2 recruitment and through HECT E3 oligomerization. The previously mentioned regulatory mechanisms can be controlled through protein–protein interactions, post-translational modifications, the binding of calcium ions, and more. Functional activity is determined not only by substrate recruitment and catalytic activity, but also by the type of ubiquitin polymers catalyzed to the substrate. While this is often determined by the specific HECT member, recent studies demonstrate that HECT E3s can be modulated to alter the type of ubiquitin polymers they catalyze. Insight into these diverse regulatory mechanisms that control HECT E3 activity may open up new avenues for therapeutic strategies aimed at inhibition or enhancement of HECT E3 function in disease-related pathways.  相似文献   

16.
Together with the estrogen receptor (ER) alpha, estrogen receptor beta (ERβ) mediates many of the physiological effects of estrogens. As ERβ is crucially involved in a variety of important physiological processes, its activity should be tightly regulated. ERβ regulation is achieved by hormone binding as well as by posttranslational modifications of the receptor. Furthermore, ERβ expression levels are under circadian control and can be regulated by DNA methylation of the ERβ promoter region. There are also a number of factors that can interfere with ERβ activity, such as phytoestrogens, endocrine disruptive chemicals, and growth factors. In this article, we outline different mechanisms of ERβ regulation and how they are implicated in various diseases. We also discuss how these insights might help to specifically target ERβ in drug design.  相似文献   

17.
18.
ADAMTS-12, a metalloproteinase that belongs to ADAMTS family, is strongly upregulated during chondrogenesis and demonstrates prominent expression in the growth plate chondrocytes. ADAMTS-12 potently inhibits chondrocyte differentiation, as revealed by altered expression of both early and later genes critical for chondrogenesis. In addition, ADAMTS-12-mediated inhibition of chondrogenesis depends on its enzymatic activity, since its point mutant lacking enzymatic activity completely loses this activity. Furthermore, the C-terminal four thrombospondin motifs known to bind COMP substrate is necessary for its full proteolytic activity and inhibition of chondrocyte differentiation. Mechanism studies demonstrate that ADAMTS-12 induces PTHrP, whereas it inhibits IHH during chondrogenesis. Furthermore, PTHrP induces ADAMTS-12 and ADAMTS-12 is hardly detectable in PTHrP-/-growth plate chondrocytes. Importantly, knocking down ADAMTS-12 mRNA levels or blocking ADAMTS-12 activity almost abolishes the PTHrP-mediated inhibition of type X collagen expression. Collectively, these findings demonstrate that ADAMTS-12, a downstream molecule of PTHrP signaling, is a novel regulator of chondrogenesis. X. H. Bai, D.W. Wang: These two authors contributed equally to this work.  相似文献   

19.
Zusammenfassung Es wird gezeigt, dass Prostaglandin in Aerosolform bei mehreren Arten als Bronchodilator wirkt. Die Wirksamkeit, natÜrliches Vorkommen und schnelle Metabolisierung der Prostaglandine sprechen fÜr eine therapeutische Verwendung als bronchodilatierende Aerosole.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号