首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Viral infections, including HIV, trigger the production of type I interferons (IFNs), which in turn, activate a signalling cascade that ultimately culminates with the expression of anti-viral proteins. Mounting evidence suggests that type I IFNs, in particular IFN-α, play a pivotal role in limiting acute HIV infection. Highly active anti-retroviral treatment reduces viral load and increases life expectancy in HIV positive patients; however, it fails to fully eliminate latent HIV reservoirs. To revisit HIV as a curable disease, this article reviews a body of literature that highlights type I IFNs as mediators in the control of HIV infection, with particular focus on the anti-HIV restriction factors induced and/or activated by IFN-α. In addition, we discuss the relevance of type I IFN treatment in the context of HIV latency reversal, novel therapeutic intervention strategies and the potential for full HIV clearance.  相似文献   

2.
Hematopoiesis is hierarchically orchestrated by a very small population of hematopoietic stem cells (HSCs) that reside in the bone-marrow niche and are tightly regulated to maintain homeostatic blood production. HSCs are predominantly quiescent, but they enter the cell cycle in response to inflammatory signals evoked by severe systemic infection or injury. Thus, hematopoietic stem and progenitor cells (HSPCs) can be activated by pathogen recognition receptors and proinflammatory cytokines to induce emergency myelopoiesis during infection. This emergency myelopoiesis counterbalances the loss of cells and generates lineage-restricted hematopoietic progenitors, eventually replenishing mature myeloid cells to control the infection. Controlled generation of such signals effectively augments host defense, but dysregulated stimulation by these signals is harmful to HSPCs. Such hematopoietic failure often results in blood disorders including chronic inflammatory diseases and hematological malignancies. Recently, we found that interleukin (IL)-27, one of the IL-6/IL-12 family cytokines, has a unique ability to directly act on HSCs and promote their expansion and differentiation into myeloid progenitors. This process resulted in enhanced production of neutrophils by emergency myelopoiesis during the blood-stage mouse malaria infection. In this review, we summarize recent advances in the regulation of myelopoiesis by proinflammatory cytokines including type I and II interferons, IL-6, IL-27, granulocyte colony-stimulating factor, macrophage colony-stimulating factor, and IL-1 in infectious diseases.  相似文献   

3.
Interferon receptors and their role in interferon action   总被引:1,自引:0,他引:1  
Interferon (IFN) proteins interact with cells through specific cell surface receptors, some of which have been purified and cloned. The alpha-IFNs and beta-IFN bind to a common receptor (type I), whereas gamma-IFN binds to a separate receptor (type II). Both types of high-affinity receptors have been demonstrated on a variety of receptors and the ways in which IFNs may affect cellular physiology and gene expression is discussed.  相似文献   

4.
5.
Summary Interferon (IFN)_proteins interact with cells through specific cell surface receptors, some of which have been purified and cloned. The alpha-IFNs and beta-IFN bind to a common receptor (type I), whereas gamma-IFN binds to a separate receptor (type II). Both types of high-affinity receptors have been demonstrated on a variety of different kinds of cells but in relatively low numbers (102–104/cell). The relationship between IFN binding to receptors and the ways in which IFNs may affect cellular physiology and gene expression is discussed.  相似文献   

6.
We found for the first time that IL-4 and IL-13, signature type 2 cytokines, are able to induce periostin expression. We and others have subsequently shown that periostin is highly expressed in chronic inflammatory diseases―asthma, atopic dermatitis, eosinophilc chronic sinusitis/chronic rhinosinusitis with nasal polyp, and allergic conjunctivitis—and that periostin plays important roles in the pathogenesis of these diseases. The epithelial/mesenchymal interaction via periostin is important for the onset of allergic inflammation, in which periostin derived from fibroblasts acts on epithelial cells or fibroblasts, activating their NF-κB. Moreover, the immune cell/non-immune cell interaction via periostin may be also involved. Now the significance of periostin has been expanded into other inflammatory or fibrotic diseases such as scleroderma and pulmonary fibrosis. The cross-talk of periostin with TGF-β or pro-inflammatory cytokines is important for the underlying mechanism of these diseases. Because of its pathogenic importance and broad expression, diagnostics or therapeutic drugs can be potentially developed to target periostin as a means of treating these diseases.  相似文献   

7.
8.
Interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF-alpha) play dominant roles in mediating the progression of many inflammatory joint diseases, including rheumatoid arthritis in humans, collagen-induced arthritis in mice and rats, and adjuvant arthritis in rats. Blockade of either cytokine partially controls these diseases. The present study investigated the value of combination anti-cytokine therapy in arthritis: the efficacy of IL-1 receptor antagonist (IL-1ra) and 30 kDa polyethylene glycol (PEG)-conjugated soluble TNF receptor type I (PEG sTNF-RI) given together was assessed in Lewis rats with adjuvant arthritis. Administration of either IL-1ra or PEG sTNF-RI partially alleviated joint inflammation, loss of bone mineral density, and loss of body weight. In contrast, combination of these anti-cytokine treatments exhibited a synergistic capacity to inhibit these changes, even when combining doses of IL-1ra and PEG sTNF-RI that did not affect lesion severity when used alone. Statistical analysis of these adjuvant arthritis data using the isobologram method proved that IL-1ra and PEG sTNF-RI were clearly synergistic in inhibiting inflammation, loss of bone mineral density, loss of body weight, and histopathologic parameters of inflammation and joint destruction. These results suggest that treating autoimmune arthritic diseases with combinations of anti-IL-1 and anti-TNF molecules will achieve superior efficacy compared to the use of a single class of anti-cytokine agent and may allow for dose reductions that could prove useful in minimizing potential side effects.  相似文献   

9.
Pancreatic beta cell damage caused by pro-inflammatory cytokines interleukin-1β (IL-1β), interferon-γ (IFNγ) and tumor necrosis factor-α (TNFα) is a key event in the pathogenesis of type 1 diabetes. The suppressor of cytokine signaling-1 (SOCS-1) blocks IFNγ-induced signaling and prevents diabetes in the non-obese diabetic mouse. Here, we investigated if SOCS-1 overexpression in primary beta cells provides protection from cytokine-induced islet cell dysfunction and death. We demonstrate that SOCS-1 does not prevent increase in NO production and decrease in glucose-stimulated insulin secretion in the presence of IL-1β, IFNγ, TNFα. However, it decreases the activation of caspase-3, -8 and -9, and thereby, promotes a robust protection from cytokine-induced beta cell death. Our data suggest that SOCS-1 overexpression may not be sufficient in preventing all the biological activities of IFNγ in beta cells. In summary, we show that interference with IFNγ signal transduction pathways by SOCS-1 inhibits cytokine-stimulated pancreatic beta cell death.  相似文献   

10.
Interferons (IFNs) are potent extracellular protein mediators of host defence and homoeostasis. This article reviews the structure of human IFN-β (HuIFN-β), in particular in relation to its activity. The recently determined crystal structure of HuIFN-β provides a framework for understanding of the mechanism of differentiation of type I IFNs by their common receptor. Insights are generated by comparison with the structures of other type I IFNs and from the interpretation of existing mutagenesis data. The details of the observed carbohydrate structure, together with biochemical data, implicate the glycosylation of HuIFN-β, which is uncommon among type I IFNs, as an important factor in the solubility, stability and, consequently, activity of the protein. Finally, these structural implications are discussed in the context of the clinical use of HuIFN-β. Received 12 June 1998; received after revision 16 July 1998; accepted 16 July 1998  相似文献   

11.
This study was done in an attempt to elucidate some of the properties of bovine IFNs. Maximum levels of both fibroblast and leukocyte IFNs occurred prior to 24 h whereas maximum levels of immune IFN were not reached until after 72 h. The latter species of IFN was unstable at either pH 2 or 56 degrees C whereas both the fibroblast and leukocyte IFNs were more stable under these conditions. Studies of cross-species protection between fibroblast and leukocyte IFNs indicate that the former was more protective for other species than the latter.  相似文献   

12.
Summary This study was done in an attempt to elucidate some of the properties of bovine IFNs. Maximum levels of both fibroblast and leukocyte IFNs occurred prior to 24 h whereas maximum levels of immune IFN were not reached until after 72 h. The latter species of IFN was unstable at either pH 2 or 56°C whereas both the fibroblast and leukocyte IFNs were more stable under these conditions. Studies of cross-species protection between fibroblast and leukocyte IFNs indicate that the former was more protective for other species than the latter.Supported in part by National Institutes of Health Biomedical Research Support Grant RR05773-08.  相似文献   

13.
A hallmark of resistance to type I interferons (IFNs) is the lack of antiproliferative responses. We show here that costimulation with IFN-alpha and transforming growth factor beta-1 (TGF-beta) potentiates antiproliferative activity in a sensitive (ME15) and resistant (D10) human melanoma cell line. A DNA microarray-based search for proliferation control genes involved that are cooperatively activated by IFN-alpha and TGF-beta, yielded 28 genes. Among these are the insulin-like growth factor-binding protein 3 (IGFBP3) and the calcium-binding protein S100A2; we demonstrate, that recombinant IGFBP3 protein is a potent growth inhibitor requiring TGF-beta activity. The antiproliferative activity of S100A2 is significantly enhanced by IFN-alpha in stably transfected ME15 or D10 cell lines. We show for the first time that IFN-alpha is a potent inducer of intracellular calcium release required for activation of S100A2. Our study provides a functional link between IFN-alpha and TGF-beta signaling and extends the function of IFN signaling to calcium-sensitive processes.  相似文献   

14.
Interleukin-12, a key cytokine in Th1-mediated autoimmune diseases   总被引:3,自引:0,他引:3  
Interleukin 12 (IL-12) is a heterodimeric cytokine produced primarily by antigen-presenting cells (APCs) which plays a key role in promoting type 1 T helper cell (Th1) responses. The powerful activity of IL-12 requires tight control, which is exerted at various levels. Primary control is exerted on IL-12 production by APCs, a major factor driving the response towards the Th1 or Th2 phenotype. Another level of control regulates expression of the IL-12 receptor (IL-12R), which is composed of two subunits, β1 and β2. The IL-12R β2 subunit has signal-transducing capacity and modulation of its expression is central to the regulation of IL-12 responsiveness. Endogenous IL-12 plays an important role in host defense against infection by a variety of intracellular pathogens. Its Th1-promoting activity, however, also favors Th1-mediated immunopathology and, in particular, the induction of Th1-mediated autoimmune diseases. Received 15 January 1999; received after revision 11 March 1999; accepted 16 March 1999  相似文献   

15.
Classical dendritic cells (cDCs) play a pivotal role in the early events that tip the immune response toward persistence or viral control. In vitro studies indicate that HIV infection induces the dysregulation of cDCs through binding of the LILRB2 inhibitory receptor to its MHC-I ligands and the strength of this interaction was proposed to drive disease progression. However, the dynamics of the LILRB2/MHC-I inhibitory axis in cDCs during early immune responses against HIV are yet unknown. Here, we show that early HIV-1 infection induces a strong and simultaneous increase of LILRB2 and MHC-I expression on the surface of blood cDCs. We further characterized the early dynamics of LILRB2 and MHC-I expression by showing that SIVmac251 infection of macaques promotes coordinated up-regulation of LILRB2 and MHC-I on cDCs and monocytes/macrophages, from blood and lymph nodes. Orientation towards the LILRB2/MHC-I inhibitory axis starts from the first days of infection and is transiently induced in the entire cDC population in acute phase. Analysis of the factors involved indicates that HIV-1 replication, TLR7/8 triggering, and treatment by IL-10 or type I IFNs increase LILRB2 expression. Finally, enhancement of the LILRB2/MHC-I inhibitory axis is specific to HIV-1 and SIVmac251 infections, as expression of LILRB2 on cDCs decreased in naturally controlled chikungunya virus infection of macaques. Altogether, our data reveal a unique up-regulation of LILRB2 and its MHC-I ligands on cDCs in the early phase of SIV/HIV infection, which may account for immune dysregulation at a critical stage of the anti-viral response.  相似文献   

16.
Interleukin-34 is a cytokine with only partially understood functions, described for the first time in 2008. Although IL-34 shares very little homology with CSF-1 (CSF1, M-CSF), they share a common receptor CSF-1R (CSF-1R) and IL-34 has also two distinct receptors (PTP-ζ) and CD138 (syndecan-1). To make the situation more complex, IL-34 has also been shown as pairing with CSF-1 to form a heterodimer. Until now, studies have demonstrated that this cytokine is released by some tissues that differ to those where CSF-1 is expressed and is involved in the differentiation and survival of macrophages, monocytes, and dendritic cells in response to inflammation. The involvement of IL-34 has been shown in areas as diverse as neuronal protection, autoimmune diseases, infection, cancer, and transplantation. Our recent work has demonstrated a new and possible therapeutic role for IL-34 as a Foxp3+ Treg-secreted cytokine mediator of transplant tolerance. In this review, we recapitulate most recent findings on IL-34 and its controversial effects on immune responses and address its immunoregulatory properties and the potential of targeting this cytokine in human.  相似文献   

17.
In recent years the etiopathology of a number of debilitating diseases such as type 2 diabetes, arthritis, atherosclerosis, psoriasis, asthma, cystic fibrosis, sepsis, and ulcerative colitis has increasingly been linked to runaway cytokine-mediated inflammation. Cytokine-based therapeutic agents play a major role in the treatment of these diseases. However, the temporospatial changes in various cytokines are still poorly understood and attempts to date have focused on the inhibition of specific cytokines such as TNF-α. As an alternative approach, a number of preclinical studies have confirmed the therapeutic potential of targeting alpha7 nicotinic acetylcholine receptor-mediated anti-inflammatory effects through modulation of proinflammatory cytokines. This “cholinergic anti-inflammatory pathway” modulates the immune system through cholinergic mechanisms that act on alpha7 receptors expressed on macrophages and immune cells. If the preclinical findings translate into human efficacy this approach could potentially provide new therapies for treating a broad array of intractable diseases and conditions with inflammatory components.  相似文献   

18.
Primary cilia are singular, cytoskeletal organelles present in the majority of mammalian cell types where they function as coordinating centres for mechanotransduction, Wnt and hedgehog signalling. The length of the primary cilium is proposed to modulate cilia function, governed in part by the activity of intraflagellar transport (IFT). In articular cartilage, primary cilia length is increased and hedgehog signaling activated in osteoarthritis (OA). Here, we examine primary cilia length with exposure to the quintessential inflammatory cytokine interleukin-1 (IL-1), which is up-regulated in OA. We then test the hypothesis that the cilium is involved in mediating the downstream inflammatory response. Primary chondrocytes treated with IL-1 exhibited a 50% increase in cilia length after 3 h exposure. IL-1-induced cilia elongation was also observed in human fibroblasts. In chondrocytes, this elongation occurred via a protein kinase A (PKA)-dependent mechanism. G-protein coupled adenylate cyclase also regulated the length of chondrocyte primary cilia but not downstream of IL-1. Chondrocytes treated with IL-1 exhibit a characteristic increase in the release of the inflammatory chemokines, nitric oxide and prostaglandin E2. However, in cells with a mutation in IFT88 whereby the cilia structure is lost, this response to IL-1 was significantly attenuated and, in the case of nitric oxide, completely abolished. Inhibition of IL-1-induced cilia elongation by PKA inhibition also attenuated the chemokine response. These results suggest that cilia assembly regulates the response to inflammatory cytokines. Therefore, the cilia proteome may provide a novel therapeutic target for the treatment of inflammatory pathologies, including OA.  相似文献   

19.
Complement has an important role in inflammation and in the normal function of the immune system. Activated complement fragments have the capacity to bind and damage self-tissues. Cells from vertebrates express on their surface regulators of complement activation that protect them from the deleterious effects of cell-bound complement fragments. Abnormalities in these regulators of complement activation may participate in the pathogenesis of autoimmune diseases and inflammatory disorders. Murine Crry is one of these regulators that inhibits the activation of the third component of complement and protects self-tissues from complement-mediated damage. Experimental work on Crry has increased our understanding of the immunobiology of complement regulation and the potential role of complement and complement inhibitors in the development and treatment of human diseases. Received 13 June 2001; received after revision 12 July 2001; accepted 9 August 2001  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号