首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
讨论了一类二阶拟线性Sobolev方程初边值问题的混合体积元方法,给出了在矩形网格剖分下的混合体积元格式,得到了离散解的最优H(div)模和L^2模误差估计.  相似文献   

2.
线性Sobolev方程的扩展混合体积元方法   总被引:2,自引:1,他引:1  
提出了线性Sobolev方程的扩展混合体积元格式.使用矩形元的最低次Raviart-Thomas混合有限元空间,证明了扩展混合体积元格式解的最优阶L^2模误差估计.  相似文献   

3.
讨论Sobolev方程初边值问题的扩展混合元方法,得到了最优L^2模误差估计。  相似文献   

4.
Sobolev方程的矩形网格混合体积元方法   总被引:2,自引:1,他引:2  
使用矩形元的最低次R-T混合有限元空间,提出了Sobolev方程初边值问题的混合体积元方法,证明了该混合体积元格式解的一阶最优L^2模和拟最优L^∞模误差估计.  相似文献   

5.
讨论Sobolev方程初边值问题的扩展混合元方法,得到了最优L2模误差估计.  相似文献   

6.
基于最低次R-T混合有限元空间,提出了求解一类Sobolev方程的扩展混合体积元格式,利用微分方程先验误差估计技巧,给出了扩展混合体积元解的误差分析,分别得到了扩展混合体积元半离散格式和全离散格式解的次优阶L2误差估计,数值试验很好地验证了这一点。  相似文献   

7.
笔者给出了线性Sobolev方程后退Euler全离散间断有限体积元格式,得到了该格式的最优L^2模和离散H^1模估计.  相似文献   

8.
Burgers方程具有广泛的应用背景,近年来,对于带有更一般形式的对流项和扩散项的Burgers型方程的定性研究越来越多,但是相关数值解法的研究尚不多见.为了能够同时逼近未知函数、未知函数的梯度和通量,对一类拟线性Burgers型方程采用扩展混合元方法进行离散,构造了半离散扩展混合元格式,并给出了L2模误差估计结果.  相似文献   

9.
讨论了Crouzeix-Raviart型非协调三角形元对一类半线性Sobolev方程的逼近.利用该单元的特殊性质,导出了最优误差估计,扩展了其非协调元的应用范围.  相似文献   

10.
Sobolev方程的H1-Galerkin混合有限元方法   总被引:1,自引:0,他引:1  
利用H1-Galerkin混合有限元方法分析了一维线性Sobolev方程,得到了未知函数和它的伴随向量函数有限元解的最优阶误差估计,该方法的优点是不需验证相容性条件即可得到和传统混合有限元方法相同的收敛阶数.  相似文献   

11.
Sobolev方程的混合有限元法   总被引:1,自引:1,他引:0  
对Sobolev方程,作者构造了一组简单的低阶四边形混合元.结合半离散有限元计算格式,通过分析,作者改进了郑和胡的收敛性结果.与已有文献中的有限元相比,该元素计算自由度少,精度较高.数值实验也验证了方法的有效性.  相似文献   

12.
对Sobolev方程采用混合有限元法进行数值模拟,给出了相应的半离散格式及其误差估计,构造了几组简单的低阶元.与已有文献中的有限元方法相比,该方法所采用的变分形式较简单,计算量较小,精度较高.通过对单元刚度矩阵的分析,得出在一维和二维情形下通量函数选取某些不同模式得到的关于位移的单元刚度矩阵等同  相似文献   

13.
对Sobolev方程采用半有限元法进行数值模拟.通过将空间变量和时间变量分离,得到Sobolev方程的离散格式.首先对空间变量应用有限元方法进行离散化,得到常微分方程组的初值问题;再对时间变量应用有限差分法进行离散化,得到一系列线性方程组,求解可得到Sobolev方程的数值解.本文从理论上推导出了本文所讨论的Sobolev方程半有限元算法的矩阵算法格式,分析了其可行性.在最后给出了数值例子,从数值例子中进一步验证了半有限元方法的可行性.  相似文献   

14.
基于平面区域的矩形网格剖分和双线性插值基函数生成的有限元空间,将有限体积元方法应用到Sobolev方程,给出了计算格式,并进行理论分析,得到了有限体积元解的最优阶H1模误差估计.  相似文献   

15.
对Sobolev方程采用混合有限元法求解,给出相应的全离散格式及其误差估计,与已有文献中的有限元方法相比,该方法所采用的变分形式较简单,计算量较小,精度较高。  相似文献   

16.
讨论了Sobolev方程初边值问题全离散化的H^1-Galerkin混合有限元解的误差估计.在处理解的误差估计时,通常采用Galerkin-有限元法或混合有限元法.本文采用日H^1-Galerkin混合有限元法,给出了Sobolev方程初边值问题的H^1-Galerkin混合看限元法全离散数值格式,得到了关于未知函数及其伴随向量函数H^1-Galerkin混合有限元解与真解的H^1模最优阶误差估计.  相似文献   

17.
在各向异性网格下,考虑两个逼近空间都是非协调元空间的情况,分析了Sobolev方程,给出了相应的半离散格式及误差估计.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号