首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A database containing mapped partial cDNA sequences from Caenorhabditis elegans will provide a ready starting point for identifying nematode homologues of important human genes and determining their functions in C. elegans. A total of 720 expressed sequence tags (ESTs) have been generated from 585 clones randomly selected from a mixed-stage C. elegans cDNA library. Comparison of these ESTs with sequence databases identified 422 new C. elegans genes, of which 317 are not similar to any sequences in the database. Twenty-six new genes have been mapped by YAC clone hybridization. Members of several gene families, including cuticle collagens, GTP-binding proteins, and RNA helicases were discovered. Many of the new genes are similar to known or potential human disease genes, including CFTR and the LDL receptor.  相似文献   

2.
Analysis of expressed sequence tags indicates 35,000 human genes   总被引:18,自引:0,他引:18  
Ewing B  Green P 《Nature genetics》2000,25(2):232-234
The number of protein-coding genes in an organism provides a useful first measure of its molecular complexity. Single-celled prokaryotes and eukaryotes typically have a few thousand genes; for example, Escherichia coli has 4,300 and Saccharomyces cerevisiae has 6,000. Evolution of multicellularity appears to have been accompanied by a several-fold increase in gene number, the invertebrates Caenorhabditis elegans and Drosophila melanogaster having 19,000 and 13,600 genes, respectively. Here we estimate the number of human genes by comparing a set of human expressed sequence tag (EST) contigs with human chromosome 22 and with a non-redundant set of mRNA sequences. The two comparisons give mutually consistent estimates of approximately 35,000 genes, substantially lower than most previous estimates. Evolution of the increased physiological complexity of vertebrates may therefore have depended more on the combinatorial diversification of regulatory networks or alternative splicing than on a substantial increase in gene number.  相似文献   

3.
The genome sequences of Caenorhabditis elegans, Drosophila melanogaster and Arabidopsis thaliana have been predicted to contain 19,000, 13,600 and 25,500 genes, respectively. Before this information can be fully used for evolutionary and functional studies, several issues need to be addressed. First, the gene number estimates obtained in silico and not yet supported by any experimental data need to be verified. For example, it seems biologically paradoxical that C. elegans would have 50% more genes than Drosophilia. Second, intron/exon predictions need to be tested experimentally. Third, complete sets of open reading frames (ORFs), or "ORFeomes," need to be cloned into various expression vectors. To address these issues simultaneously, we have designed and applied to C. elegans the following strategy. Predicted ORFs are amplified by PCR from a highly representative cDNA library using ORF-specific primers, cloned by Gateway recombination cloning and then sequenced to generate ORF sequence tags (OSTs) as a way to verify identity and splicing. In a sample (n=1,222) of the nearly 10,000 genes predicted ab initio (that is, for which no expressed sequence tag (EST) is available so far), at least 70% were verified by OSTs. We also observed that 27% of these experimentally confirmed genes have a structure different from that predicted by GeneFinder. We now have experimental evidence that supports the existence of at least 17,300 genes in C. elegans. Hence we suggest that gene counts based primarily on ESTs may underestimate the number of genes in human and in other organisms.  相似文献   

4.
Now that some genomes have been completely sequenced, the ability to direct specific mutations into genomes is particularly desirable. Here we present a method to create mutations in the Caenorhabditis elegans genome efficiently through transgene-directed, transposon-mediated gene conversion. Engineered deletions targeted into two genes show that the frequency of obtaining the desired mutation was higher using this approach than using standard transposon insertion-deletion approaches. We also targeted an engineered green fluorescent protein insertion-replacement cassette to one of these genes, thereby confirming that custom alleles of different types can be created in vitro to make the corresponding mutations in vivo. This approach should also be applicable to heterologous transposons in C. elegans and other organisms, including vertebrates.  相似文献   

5.
Cell-fate specification and cell-cell signaling have been well studied during vulva development in Caenorhabditis elegans and provide a paradigm in evolutionary developmental biology. Pristionchus pacificus has been developed as a 'satellite' organism with an integrated physical and genetic map that allows detailed comparisons to C. elegans. A common aspect of vulva formation in both species is the polarization of the P7.p lineage, which is responsible for vulval symmetry. In C. elegans, Wnt signaling is crucial for P7.p cell-fate patterning; nothing is known about vulval symmetry in P. pacificus. We isolated mutations that disrupt polarization of the P7.p lineage in P. pacificus and found that the corresponding gene encodes a Frizzled-like molecule. In addition, mutations in Ppa-lin-17 (encoding Frizzled) and morpholino knock-down of Ppa-lin-44 (encoding Wnt), Ppa-egl-20 (encoding Wnt), Ppa-mig-5 (encoding Dsh), Ppa-apr-1 (encoding APC) and Ppa-bar-1 (encoding beta-catenin) results in gonad-independent vulva differentiation, indicating that these genes have a role in a negative signaling process. In contrast, in C. elegans, Wnt signaling has a positive role in vulva induction, and mutations in bar-1 result in a hypoinduced phenotype. Therefore, whereas the molecular mechanisms that generate vulval symmetry are conserved, the genetic control of vulva induction diversified during evolution.  相似文献   

6.
Exogenous double-stranded RNA (dsRNA) has been shown to exert homology-dependent effects at the level of both target mRNA stability and chromatin structure. Using C. elegans undergoing RNAi as an animal model, we have investigated the generality, scope and longevity of dsRNA-targeted chromatin effects and their dependence on components of the RNAi machinery. Using high-resolution genome-wide chromatin profiling, we found that a diverse set of genes can be induced to acquire locus-specific enrichment of histone H3 lysine 9 trimethylation (H3K9me3), with modification footprints extending several kilobases from the site of dsRNA homology and with locus specificity sufficient to distinguish the targeted locus from the other 20,000 genes in the C. elegans genome. Genetic analysis of the response indicated that factors responsible for secondary siRNA production during RNAi were required for effective targeting of chromatin. Temporal analysis revealed that H3K9me3, once triggered by dsRNA, can be maintained in the absence of dsRNA for at least two generations before being lost. These results implicate dsRNA-triggered chromatin modification in C. elegans as a programmable and locus-specific response defining a metastable state that can persist through generational boundaries.  相似文献   

7.
Caenorhabditis elegans is the first animal whose genomic sequence has been determined. One of the new possibilities in post-sequence genetics is the analysis of complete gene families at once. We studied the family of heterotrimeric G proteins. C. elegans has 20 Galpha, 2 Gbeta and 2 Ggamma genes. There is 1 homologue of each of the 4 mammalian classes of Galpha genes, G(i)/G(o)alpha, G(s)alpha , G(q)alpha and G12alpha, and there are 16 new alpha genes. Although the conserved Galpha subunits are expressed in many neurons and muscle cells, GFP fusions indicate that 14 new Galpha genes are expressed almost exclusively in a small subset of the chemosensory neurons of C. elegans. We generated loss-of-function alleles using target-selected gene inactivation. None of the amphid-expressed genes are essential for viability, and only four show any detectable phenotype (chemotaxis defects), suggesting extensive functional redundancy. On the basis of functional analysis, the 20 genes encoding Galpha proteins can be divided into two groups: those that encode subunits affecting muscle activity (homologues of G(i)/G(o)alpha, G(s)alpha and G(q)), and those (14 new genes) that encode proteins most likely involved in perception.  相似文献   

8.
Cloning procedures aided by homology searches of EST databases have accelerated the pace of discovery of new genes, but EST database searching remains an involved and onerous task. More than 1.6 million human EST sequences have been deposited in public databases, making it difficult to identify ESTs that represent new genes. Compounding the problems of scale are difficulties in detection associated with a high sequencing error rate and low sequence similarity between distant homologues. We have developed a new method, coupling BLAST-based searches with a domain identification protocol, that filters candidate homologues. Application of this method in a large-scale analysis of 100 signalling domain families has led to the identification of ESTs representing more than 1,000 novel human signalling genes. The 4,206 publicly available ESTs representing these genes are a valuable resource for rapid cloning of novel human signalling proteins. For example, we were able to identify ESTs of at least 106 new small GTPases, of which 6 are likely to belong to new subfamilies. In some cases, further analyses of genomic DNA led to the discovery of previously unidentified full-length protein sequences. This is exemplified by the in silico cloning (prediction of a gene product sequence using only genomic and EST sequence data) of a new type of GTPase with two catalytic domains.  相似文献   

9.
Genetic screens carried out in lower organisms such as yeast, Drosophila melanogaster and Caenorhabditis elegans have revealed many signaling pathways. For example, components of the RAS signaling cascade were identified using a mutant eye phenotype in D. melanogaster as a readout. Screening is usually based on enhancing or suppressing a phenotype by way of a known mutation in a particular signaling pathway. Such in vivo screens have been difficult to carry out in mammals, however, owing to their relatively long generation times and the limited number of animals that can be screened. Here we describe an in vivo mammalian genetic screen used to identify components of pathways contributing to oncogenic transformation. We applied retroviral insertional mutagenesis in Myc transgenic (E mu Myc) mice lacking expression of Pim1 and Pim2 to search for genes that can substitute for Pim1 and Pim2 in lymphomagenesis. We determined the chromosomal positions of 477 retroviral insertion sites (RISs) derived from 38 tumors from E mu Myc Pim1(-/-) Pim2(-/-) mice and 27 tumors from E mu Myc control mice using the Ensembl and Celera annotated mouse genome databases. There were 52 sites occupied by proviruses in more than one tumor. These common insertion sites (CISs) are likely to contain genes contributing to tumorigenesis. Comparison of the RISs in tumors of Pim-null mice with the RISs in tumors of E mu Myc control mice indicated that 10 of the 52 CISs belong to the Pim complementation group. In addition, we found that Pim3 is selectively activated in Pim-null tumor cells, which supports the validity of our approach.  相似文献   

10.
Here we present a draft genome sequence of the nematode Pristionchus pacificus, a species that is associated with beetles and is used as a model system in evolutionary biology. With 169 Mb and 23,500 predicted protein-coding genes, the P. pacificus genome is larger than those of Caenorhabditis elegans and the human parasite Brugia malayi. Compared to C. elegans, the P. pacificus genome has more genes encoding cytochrome P450 enzymes, glucosyltransferases, sulfotransferases and ABC transporters, many of which were experimentally validated. The P. pacificus genome contains genes encoding cellulase and diapausin, and cellulase activity is found in P. pacificus secretions, indicating that cellulases can be found in nematodes beyond plant parasites. The relatively higher number of detoxification and degradation enzymes in P. pacificus is consistent with its necromenic lifestyle and might represent a preadaptation for parasitism. Thus, comparative genomics analysis of three ecologically distinct nematodes offers a unique opportunity to investigate the association between genome structure and lifestyle.  相似文献   

11.
Arabidopsis thaliana has emerged as a model system for studies of plant genetics and development, and its genome has been targeted for sequencing by an international consortium (the Arabidopsis Genome Initiative; http://genome-www. stanford.edu/Arabidopsis/agi.html). To support the genome-sequencing effort, we fingerprinted more than 20,000 BACs (ref. 2) from two high-quality publicly available libraries, generating an estimated 17-fold redundant coverage of the genome, and used the fingerprints to nucleate assembly of the data by computer. Subsequent manual revision of the assemblies resulted in the incorporation of 19,661 fingerprinted BACs into 169 ordered sets of overlapping clones ('contigs'), each containing at least 3 clones. These contigs are ideal for parallel selection of BACs for large-scale sequencing and have supported the generation of more than 5.8 Mb of finished genome sequence submitted to GenBank; analysis of the sequence has confirmed the integrity of contigs constructed using this fingerprint data. Placement of contigs onto chromosomes can now be performed, and is being pursued by groups involved in both sequencing and positional cloning studies. To our knowledge, these data provide the first example of whole-genome random BAC fingerprint analysis of a eucaryote, and have provided a model essential to efforts aimed at generating similar databases of fingerprint contigs to support sequencing of other complex genomes, including that of human.  相似文献   

12.
13.
Selection for short introns in highly expressed genes   总被引:1,自引:0,他引:1  
  相似文献   

14.
The nematode Caenorhabditis elegans is central to research in molecular, cell and developmental biology, but nearly all of this research has been conducted on a single strain of C. elegans. Little is known about the population genomic and evolutionary history of this species. We characterized C. elegans genetic variation using high-throughput selective sequencing of a worldwide collection of 200 wild strains and identified 41,188 SNPs. Notably, C. elegans genome variation is dominated by a set of commonly shared haplotypes on four of its six chromosomes, each spanning many megabases. Population genetic modeling showed that this pattern was generated by chromosome-scale selective sweeps that have reduced variation worldwide; at least one of these sweeps probably occurred in the last few hundred years. These sweeps, which we hypothesize to be a result of human activity, have drastically reshaped the global C. elegans population in the recent past.  相似文献   

15.
Most heritable traits, including disease susceptibility, are affected by interactions between multiple genes. However, we understand little about how genes interact because very few possible genetic interactions have been explored experimentally. We have used RNA interference in Caenorhabditis elegans to systematically test approximately 65,000 pairs of genes for their ability to interact genetically. We identify approximately 350 genetic interactions between genes functioning in signaling pathways that are mutated in human diseases, including components of the EGF/Ras, Notch and Wnt pathways. Most notably, we identify a class of highly connected 'hub' genes: inactivation of these genes can enhance the phenotypic consequences of mutation of many different genes. These hub genes all encode chromatin regulators, and their activity as genetic hubs seems to be conserved across animals. We propose that these genes function as general buffers of genetic variation and that these hub genes may act as modifier genes in multiple, mechanistically unrelated genetic diseases in humans.  相似文献   

16.
To verify the genome annotation and to create a resource to functionally characterize the proteome, we attempted to Gateway-clone all predicted protein-encoding open reading frames (ORFs), or the 'ORFeome,' of Caenorhabditis elegans. We successfully cloned approximately 12,000 ORFs (ORFeome 1.1), of which roughly 4,000 correspond to genes that are untouched by any cDNA or expressed-sequence tag (EST). More than 50% of predicted genes needed corrections in their intron-exon structures. Notably, approximately 11,000 C. elegans proteins can now be expressed under many conditions and characterized using various high-throughput strategies, including large-scale interactome mapping. We suggest that similar ORFeome projects will be valuable for other organisms, including humans.  相似文献   

17.
We report a systematic RNA interference (RNAi) screen of 5,690 Caenorhabditis elegans genes for gene inactivations that increase lifespan. We found that genes important for mitochondrial function stand out as a principal group of genes affecting C. elegans lifespan. A classical genetic screen identified a mutation in the mitochondrial leucyl-tRNA synthetase gene (lrs-2) that impaired mitochondrial function and was associated with longer-lifespan. The long-lived worms with impaired mitochondria had lower ATP content and oxygen consumption, but differential responses to free-radical and other stresses. These data suggest that the longer lifespan of C. elegans with compromised mitochrondria cannot simply be assigned to lower free radical production and suggest a more complex coupling of metabolism and longevity.  相似文献   

18.
19.
A transcriptomic analysis of the phylum Nematoda   总被引:1,自引:0,他引:1  
The phylum Nematoda occupies a huge range of ecological niches, from free-living microbivores to human parasites. We analyzed the genomic biology of the phylum using 265,494 expressed-sequence tag sequences, corresponding to 93,645 putative genes, from 30 species, including 28 parasites. From 35% to 70% of each species' genes had significant similarity to proteins from the model nematode Caenorhabditis elegans. More than half of the putative genes were unique to the phylum, and 23% were unique to the species from which they were derived. We have not yet come close to exhausting the genomic diversity of the phylum. We identified more than 2,600 different known protein domains, some of which had differential abundances between major taxonomic groups of nematodes. We also defined 4,228 nematode-specific protein families from nematode-restricted genes: this class of genes probably underpins species- and higher-level taxonomic disparity. Nematode-specific families are particularly interesting as drug and vaccine targets.  相似文献   

20.
We have constructed a new generation yeast artificial chromosome (YAC) library from female C57BL/10 mice in a recombination-deficient strain of Saccharomyces cerevisiae carrying a mutation in the RAD52 gene. The YAC library contains 41,568 clones with an average insert size of 240 kilobases, representing a greater than threefold coverage of the mouse genome. Currently, the library can be screened by polymerase chain reaction and we have isolated positive clones at a number of loci in the mouse genome. This rad52 library should enable a long-term assessment of the effect of one of the yeast recombination pathway genes on both, genome-wide YAC clone stability and the frequency of chimaeric clones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号