共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Xiao B Heath R Saiu P Leiper FC Leone P Jing C Walker PA Haire L Eccleston JF Davis CT Martin SR Carling D Gamblin SJ 《Nature》2007,449(7161):496-500
AMP-activated protein kinase (AMPK) regulates cellular metabolism in response to the availability of energy and is therefore a target for type II diabetes treatment. It senses changes in the ratio of AMP/ATP by binding both species in a competitive manner. Thus, increases in the concentration of AMP activate AMPK resulting in the phosphorylation and differential regulation of a series of downstream targets that control anabolic and catabolic pathways. We report here the crystal structure of the regulatory fragment of mammalian AMPK in complexes with AMP and ATP. The phosphate groups of AMP/ATP lie in a groove on the surface of the gamma domain, which is lined with basic residues, many of which are associated with disease-causing mutations. Structural and solution studies reveal that two sites on the gamma domain bind either AMP or Mg.ATP, whereas a third site contains a tightly bound AMP that does not exchange. Our binding studies indicate that under physiological conditions AMPK mainly exists in its inactive form in complex with Mg.ATP, which is much more abundant than AMP. Our modelling studies suggest how changes in the concentration of AMP ([AMP]) enhance AMPK activity levels. The structure also suggests a mechanism for propagating AMP/ATP signalling whereby a phosphorylated residue from the alpha and/or beta subunits binds to the gamma subunit in the presence of AMP but not when ATP is bound. 相似文献
6.
7.
8.
Identification of a widespread nuclear actin binding protein 总被引:16,自引:0,他引:16
9.
10.
Progesterone binding plasma protein (PBP) 总被引:3,自引:0,他引:3
11.
Activation of protein kinase C potentiates isoprenaline-induced cyclic AMP accumulation in rat pinealocytes 总被引:19,自引:0,他引:19
The pineal gland has proven to be an excellent model for the study of adrenergic control systems. Noradrenaline, released from sympathetic nerve terminals in the pineal gland, regulates a large nocturnal increase in melatonin synthesis by stimulating the activity of arylalkylamine N-acetyltransferase (NAT, EC 2.3.1.87) 30-70-fold. An essential step in both the induction and maintenance of high NAT activity is an increase in intracellular cyclic AMP. Noradrenaline acts via beta-adrenoceptors to increase pineal cyclic AMP by activating adenylate cyclase, and the activation of pineal alpha 1-adrenoceptors potentiates beta-adrenergic stimulation not only of NAT but of both cyclic AMP and cyclic GMP. Here we describe investigations designed to test whether alpha 1-adrenergic potentiation of beta-adrenergic stimulation of pineal cyclic AMP involves protein kinase C. Our results suggest that kinase activation is involved and the data provide the first demonstration of a synergistic interaction between Ca2+-phospholipid-dependent protein kinase (protein kinase C) and neurotransmitter-dependent stimulation of cyclic AMP. 相似文献
12.
Fluorescence ratio imaging of cyclic AMP in single cells. 总被引:24,自引:0,他引:24
Fluorescence imaging is perhaps the most powerful technique currently available for continuously observing the dynamic intracellular biochemistry of single living cells. However, fluorescent indicator dyes have been available only for simple inorganic ions such as Ca2+, H+, Na+, K+, Mg2+ and Cl-. We now report a fluorescent indicator for the adenosine 3',5'-cyclic monophosphate (cAMP) signalling pathway. The sensor consists of cAMP-dependent protein kinase in which the catalytic (C) and regulatory (R) subunits are each labelled with a different fluorescent dye such as fluorescein or rhodamine capable of fluorescence resonance energy transfer in the holoenzyme complex R2C2. When cAMP molecules bind to the R subunits, the C subunits dissociate, thereby eliminating energy transfer. The change in shape of the fluorescence emission spectrum allows cAMP concentrations and the activation of the kinase to be nondestructively visualized in single living cells microinjected with the labelled holoenzyme. 相似文献
13.
14.
15.
16.
17.
Cyclic AMP acts as a second messenger in the modulation of several ion channels that are typically controlled by a phosphorylation process. In cardiac pacemaker cells, adrenaline and acetylcholine regulate the hyperpolarization-activated current (if), but in opposite ways; this current is involved in the generation and modulation of pacemaker activity. These actions are mediated by cAMP and underlie control of spontaneous rate by neurotransmitters. Whether the cAMP modulation of if is mediated by channel phosphorylation is, however, still unknown. Here we investigate the action of cAMP on if in excised patches of cardiac pacemaker cells and find that cAMP activates if by a mechanism independent of phosphorylation, involving a direct interaction with the channels at their cytoplasmic side. Cyclic AMP activates if by shifting its activation curve to more positive voltages, in agreement with whole-cell results. This is the first evidence of an ion channel whose gating is dually regulated by voltage and direct cAMP binding. 相似文献
18.
19.
S N Bose R J Davies D W Anderson J C Van Niekerk L R Nassimbeni R D Macfarlane 《Nature》1978,271(5647):783-784
20.