首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Eukaryotic nitrate and nitrite transporters   总被引:12,自引:0,他引:12  
Nitrate transport is the key step controlling the amount of nitrate incorporated by the cells and subsequent of storage, reduction or export. Molecular, genetic and biochemical approaches to the study of eukaryotic nitrate/nitrite transporters allow an initial understanding of this step, which is much more complex and structured than previously suspected. At the plasma membrane level, two gene families, Nrt1 and Nrt2, account for high- and low-affinity nitrate transporters. Functionality of NRT1 from Arabidopsis and NRT2 proteins from Aspergillus and Chlamydomonas has been demonstrated. However, redundancy of these systems makes it difficult to assign particular physiological roles to each. Data on genes involved in the regulation of nitrate transport and reduction are still scarce. Information on nitrite transporters to the chloroplast is biased by the belief that in vivo nitrous acid diffuses freely to this organellum. The recent progress on these aspects is discussed in this review.  相似文献   

2.
The ATP binding cassette (ABC) superfamily of membrane transporters is one of the largest protein classes known, and counts numerous proteins involved in the trafficking of biological molecules across cell membranes. The first known human ABC transporter was P-glycoprotein (P-gp), which confers multidrug resistance (MDR) to anticancer drugs. In recent years, we have obtained an increased understanding of the mechanism of action of P-gp as its ATPase activity, substrate specificity and pharmacokinetic interactions have been investigated. This review focuses on the functional characterization of P-gp, as well as other ABC transporters involved in MDR: the family of multidrug-resistance-associated proteins (MRP1-7), and the recently discovered ABC half-transporter MXR (also known as BCRP, ABCP and ABCG2). We describe recent progress in the analysis of protein structure-function relationships, and consider the conceptual problem of defining and identifying substrates and inhibitors of MDR. An in-depth discussion follows of how coupling of nucleotide hydrolysis to substrate transport takes place, and we propose a scheme for the mechanism of P-gp function. Finally, the clinical correlations, both for reversal of MDR in cancer and for drug delivery, are discussed.  相似文献   

3.
Plant mitochondrial carriers: an overview   总被引:15,自引:0,他引:15  
In the two last decades, biochemical studies using mitochondrial swelling experiments or direct solute uptake in isolated mitochondria have lead to the identification of different transport systems at the level of the plant mitochondrial inner membrane. Although most of them have been found to have similar features to those identified in animal mitochondria, some differences have been observed between plant and animal transporters. More recently, molecular biology studies have revealed that most of the mitochondrial exchanges are performed by nuclear encoded proteins, which form a superfamily. Members of this family have been reported in animals, yeast as well as plants. This review attempts to give an overview of the present knowledge concerning the biochemical and molecular characterisation of plant members of the mitochondrial carrier family and, when possible, a comparison with carriers from other organisms.  相似文献   

4.
The major route of protein translocation in bacteria is the so-called general secretion pathway (Sec-pathway). This route has been extensively studied in Escherichia coli and other bacteria. The movement of preproteins across the cytoplasmic membrane is mediated by a multimeric membrane protein complex called translocase. The core of the translocase consists of a proteinaceous channel formed by an oligomeric assembly of the heterotrimeric membrane protein complex SecYEG and the peripheral adenosine triphosphatase (ATPase) SecA as molecular motor. Many secretory proteins utilize the molecular chaperone SecB for targeting and stabilization of the unfolded state prior to translocation, while most nascent inner membrane proteins are targeted to the translocase by the signal recognition particle and its membrane receptor. Translocation is driven by ATP hydrolysis and the proton motive force. In the last decade, genetic and biochemical studies have provided detailed insights into the mechanism of preprotein translocation. Recent crystallographic studies on SecA, SecB and the SecYEG complex now provide knowledge about the structural features of the translocation process. Here, we will discuss the mechanistic and structural basis of the translocation of proteins across and the integration of membrane proteins into the cytoplasmic membrane.Received 10 January 2003; received after revision 2 April 2003; accepted 4 April 2003  相似文献   

5.
G protein-coupled receptors (GPCRS) represent a class of integral membrane proteins involved in many biological processes and pathologies. Fifty percent of all modern drugs and almost 25% of the top 200 bestselling drugs are estimated to target GPCRs. Despite these crucial biological implications, very little is known, at atomic resolution, about the detailed molecular mechanisms by which these membrane proteins are able to recognize their extra-cellular stimuli and transmit the associated messages. Obviously, our understanding of GPCR functioning would be greatly facilitated by the availability of high-resolution three-dimensional (3D) structural data. However, expression, solubilization and purification of these membrane proteins are not easy to achieve, and at present, only one 3D structure has been determined, that of bovine rhodopsin. This review presents and compares the different successful strategies which have been applied to solubilize and purify recombinant GPCRs in the perspective of structural biology experiments. Received 21 November 2005; received after revision 20 January 2006; accepted 2 February 2006 An erratum to this article is available at .  相似文献   

6.
Despite being relatively insensitive to environmental insult, the spore is responsive to low concentrations of chemical germinants, which induce germination. The process of bacterial spore germination involves membrane permeability changes, ion fluxes and the activation of enzymes that degrade the outer layers of the spore. A number of components in the spore that are required for the germination response have been identified, including a spore-specific family of receptor proteins (the GerA family), an ion transporter and cortex lytic enzymes. The germinant traverses the outer layers of the spore and interacts with its receptor in the inner membrane to initiate the cascade of germination events, but the molecular details of this signal transduction process remain to be identified.  相似文献   

7.
The biophysical principles and mechanisms by which membrane proteins insert and fold into a biomembrane have mostly been studied with bacteriorhodopsin and outer membrane protein A (OmpA). This review describes the assembly process of the monomeric outer membrane proteins of Gram-negative bacteria, for which OmpA has served as an example. OmpA is a two-domain outer membrane protein composed of a 171-residue eight-stranded -barrel transmembrane domain and a 154-residue periplasmic domain. OmpA is translocated in an unstructured form across the cytoplasmic membrane into the periplasm. In the periplasm, unfolded OmpA is kept in solution in complex with the molecular chaperone Skp. After binding of periplasmic lipopolysaccharide, OmpA insertion and folding occur spontaneously upon interaction of the complex with the phospholipid bilayer. Insertion and folding of the -barrel transmembrane domain into the lipid bilayer are highly synchronized, i.e. the formation of large amounts of -sheet secondary structure and -barrel tertiary structure take place in parallel with the same rate constants, while OmpA inserts into the hydrophobic core of the membrane. In vitro, OmpA can successfully fold into a range of model membranes of very different phospholipid compositions, i.e. into bilayers of lipids of different headgroup structures and hydrophobic chain lengths. Three membrane-bound folding intermediates of OmpA were discovered in folding studies with dioleoylphosphatidylcholine bilayers. Their formation was monitored by time-resolved distance determinations by fluorescence quenching, and they were structurally distinguished by the relative positions of the five tryptophan residues of OmpA in projection to the membrane normal. Recent studies indicate a chaperone-assisted, highly synchronized mechanism of secondary and tertiary structure formation upon membrane insertion of -barrel membrane proteins such as OmpA that involves at least three structurally distinct folding intermediates.  相似文献   

8.
Intracellular pH (pHi) is a major regulator of various and critical cellular functions. A close regulation of pHi is thus mandatory to maintain normal cellular activity. To this end, all cells express ion transporters that carry across their plasma membrane H+ or equivalent H+ into and out of the cell. Besides pHi, these ion transporters are under the regulation of neurohormonal stimuli. This review summarises the molecular identity, regulation and function of the main membrane pH-regulatory ion transporters. Received 30 December 1998; received after revision 4 February 1999; accepted 9 February 1999  相似文献   

9.
The ATP-binding cassette family is one of the largest groupings of membrane proteins, moving allocrites across lipid membranes, using energy from ATP. In bacteria, they reside in the inner membrane and are involved in both uptake and export. In eukaryotes, these transporters reside in the cell’s internal membranes as well as in the plasma membrane and are unidirectional—out of the cytoplasm. The range of substances that these proteins can transport is huge, which makes them interesting for structure–function studies. Moreover, their abundance in nature has made them targets for structural proteomics consortia. There are eight independent structures for ATP-binding cassette transporters, making this one of the best characterised membrane protein families. Our understanding of the mechanism of transport across membranes and membrane protein structure in general has been enhanced by recent developments for this family.  相似文献   

10.
The functional significance of the lipid-protein interface in photosynthetic membranes, mainly in thylakoids, is reviewed with emphasis on membrane structure and dynamics. The lipid-protein interface is identified primarily by the restricted molecular dynamics of its lipids as compared with the dynamics in the bulk lipid phase of the membrane. In a broad sense, lipid-protein interfaces comprise solvation shell lipids that are weakly associated with the hydrophobic surface of transmembrane proteins but also include lipids that are strongly and specifically bound to membrane proteins or protein assemblies. The relation between protein-associated lipids and the overall fluidity of the thylakoid membrane is discussed. Spin label electron paramagnetic resonance spectroscopy has been identified as the technique of choice to characterize the protein solvation shell in its highly dynamic nature; biochemical and direct structural methods have revealed an increasing number of protein-bound lipids. The structural and functional roles of these protein-bound lipids are mustered, but in most cases they remain to be determined. As suggested by recent data, the interaction of the non-bilayer-forming lipid, monogalactosyldyacilglycerol (MGDG), with the main light-harvesting chlorophyll a/b-binding protein complexes of photosystem-II (LHCII), the most abundant lipid and membrane protein components on earth, play multiple structural and functional roles in developing and mature thylakoid membranes. A brief outlook to future directions concludes this review.  相似文献   

11.
The ABC transporter structure and mechanism: perspectives on recent research   总被引:15,自引:0,他引:15  
ATP-binding cassette (ABC) transporters are multidomain integral membrane proteins that utilise the energy of ATP hydrolysis to translocate solutes across cellular membranes in all phyla. ABC transporters form one of the largest of all protein families and are central to many important biomedical phenomena, including resistance of cancers and pathogenic microbes to drugs. Elucidation of the structure and mechanism of ABC transporters is essential to the rational design of agents to control their function. While a wealth of high-resolution structures of ABC proteins have been produced in recent years, many fundamental questions regarding the proteins mechanism remain unanswered. In this review, we examine the recent structural data concerning ABC transporters and related proteins in the light of other experimental and theoretical data, and discuss these data in relation to current ideas concerning the transporters molecular mechanism.Received 29 August 2003; received after revision 19 November 2003; accepted 28 November 2003  相似文献   

12.
Summary The matrix space of mitochondria is surrounded by two membranes. The mitochondrial inner membrane contains the respiration chain and a large number of highly specific carriers for the mostly anionic substrates of mitochondrial metabolism. In contrast to this the permeability properties of the mitochondrial outer membrane are by far less specific. It acts as a molecular sieve for hydrophilic molecules with a defined exclusion limit around 3000 Da. Responsible for the extremely high permeability of the mitochondrial outer membrane is the presence of a pore-forming protein termed mitochondrial porin. Mitochondrial porins have been isolated from a variety of eukaryotic cells. They are basic proteins with molecular masses between 30 and 35 kDa. Reconstitution experiments define their function as pore-forming components with a single-channel conductance of about 0.40 nS (nano Siemens) in 0.1 M KCl at low voltages. In the open state mitochondrial porin behaves as a general diffusion pore with an effective diameter of 1.7 nm. Eukaryotic porins are slightly anion-selective in the open state but become cation-selective after voltage-dependent closure.  相似文献   

13.
Chloroplasts from land plants and algae originated from an endosymbiotic event, most likely involving an ancestral photoautotrophic prokaryote related to cyanobacteria. Both chloroplasts and cyanobacteria have thylakoid membranes, harboring pigment-protein complexes that perform the light-dependent reactions of oxygenic photosynthesis. The composition, function and regulation of these complexes have thus far been the major topics in thylakoid membrane research. For many decades, we have also accumulated biochemical and electrophysiological evidence for the existence of solute transthylakoid transport activities that affect photosynthesis. However, research dedicated to molecular identification of the responsible proteins has only recently emerged with the explosion of genomic information. Here we review the current knowledge about channels and transporters from the thylakoid membrane of Arabidopsis thaliana and of the cyanobacterium Synechocystis sp. PCC 6803. No homologues of these proteins have been characterized in algae, although similar sequences could be recognized in many of the available sequenced genomes. Based on phylogenetic analyses, we hypothesize a host origin for most of the so far identified Arabidopsis thylakoid channels and transporters. Additionally, the shift from a non-thylakoid to a thylakoid location appears to have occurred at different times for different transport proteins. We propose that closer control of and provision for the thylakoid by products of the host genome has been an ongoing process, rather than a one-step event. Some of the proteins recruited to serve in the thylakoid may have been the result of the increased specialization of its pigment-protein composition and organization in green plants.  相似文献   

14.
Human eosinophil cationic protein (ECP)/ ribonuclease 3 (RNase 3) is a protein secreted from the secondary granules of activated eosinophils. Specific properties of ECP contribute to its cytotoxic activities associated with defense mechanisms. In this work the ECP cytotoxic activity on eukaryotic cell lines is analyzed. The ECP effects begin with its binding and aggregation to the cell surface, altering the cell membrane permeability and modifying the cell ionic equilibrium. No internalization of the protein is observed. These signals induce cell-specific morphological and biochemical changes such as chromatin condensation, reversion of membrane asymmetry, reactive oxygen species production and activation of caspase-3-like activity and, eventually, cell death. However, the ribonuclease activity component of ECP is not involved in this process as no RNA degradation is observed. In summary, the cytotoxic effect of ECP is attained through a mechanism different from that of other cytotoxic RNases and may be related with the ECP accumulation associated with the inflammatory processes, in which eosinophils are present. Received 26 October 2007; accepted 23 November 2007  相似文献   

15.
Amino acid transporters are essential components of prokaryote and eukaryote cells, possess distinct physiological functions, and differ markedly in substrate specificity. Amino acid transporters can be both drug targets and drug transporters (bioavailability, targeting) with many monogenic disorders resulting from dysfunctional membrane transport. The largest collection of amino acid transporters (including the mammalian SLC6, SLC7, SLC32, SLC36, and SLC38 families), across all kingdoms of life, is within the Amino acid-Polyamine-organoCation (APC) superfamily. The LeuT-fold is a paradigm structure for APC superfamily amino acid transporters and carriers of sugars, neurotransmitters, electrolytes, osmolytes, vitamins, micronutrients, signalling molecules, and organic and fatty acids. Each transporter is specific for a unique sub-set of solutes, specificity being determined by how well a substrate fits into each binding pocket. However, the molecular basis of substrate selectivity remains, by and large, elusive. Using an integrated computational and experimental approach, we demonstrate that a single position within the LeuT-fold can play a crucial role in determining substrate specificity in mammalian and arthropod amino acid transporters within the APC superfamily. Systematic mutation of the amino acid residue occupying the equivalent position to LeuT V104 titrates binding pocket space resulting in dramatic changes in substrate selectivity in exemplar APC amino acid transporters including PAT2 (SLC36A2) and SNAT5 (SLC38A5). Our work demonstrates how a single residue/site within an archetypal structural motif can alter substrate affinity and selectivity within this important superfamily of diverse membrane transporters.  相似文献   

16.
Membrane fission is essential in various intracellular dissociative transport steps. The molecular mechanisms by which endocytic vesicles detach from the plasma membrane are being rapidly elucidated. Much less is known about the fission mechanisms operating at Golgi tubular networks; these include the Golgi transport and sorting stations, the trans-Golgi and cis-Golgi networks, where the geometry and physical properties of the membranes differ from those at the cell surface. Here we discuss the lipid and protein machineries that have so far been related to the fission process, with emphasis on those acting in the Golgi complex. Received 10 May 2002; received after revision 20 June 2002; accepted 26 June 2002 RID="*" ID="*"Corresponding author.  相似文献   

17.
Structure-based drug discovery has proven useful in improving and shortening the drug development process. The approach of structural genomics to study a large number of targets in parallel has been commonly applied to protein families and even whole genomes. Paradoxically, although membrane proteins represent the largest type of drug targets, up to 70% today, determination of their structure has been modest compared to that of soluble proteins. Because membrane proteins are important for drug discovery an emphasis has been placed on developing technologies and methods to determine membrane protein structures. Several structural genomics initiatives have been established, focusing on the structural biology of membrane proteins. Received 31 May 2006; received after revision 5 July 2006; accepted 9 August 2006  相似文献   

18.
Summary Substantial progress has been made in the last ten years in understanding the structural and functional organization of parasitic protozoa and helminths and the complex physiological relationships that exist between these organisms and their hosts. By employing the new powerful techniques of biochemistry, molecular biology and immunology the genomic organization in parasites, the molecular basis of parasite's variation in surface antigens and the biosynthesis, processing, transport and membrane anchoring of these and other surface proteins were extensively investigated. Significant advances have also been made in our knowledge of the specific and often peculiar strategies of intermediary metabolism, cell compartmentation, the role of oxygen for parasites and the mechanisms of antiparasitic drug action. Further major fields of interest are currently the complex processes which enables parasites to evade the host's immune defense system and other mechanisms which have resulted in the specific adaptations which enabled parasites to survive within their host environments. Various approaches in molecular and biochemical parasitology and in immunoparasitology have been proven to be of high potential for serodiagnosis, immunoprophylaxis and drug design.This paper is based on a review presented at a workshop on Molecular Parasitology, organized by the Swiss Society of Tropical Medecine and Parasitology at the University of Neuchâtel, March 1985.  相似文献   

19.
Heat-shock protein 90, a chaperone for folding and regulation   总被引:21,自引:0,他引:21  
Heat-shock protein 90 (Hsp90) is an abundant and highly conserved molecular chaperone that is essential for viability in eukaryotes. Hsp90 fulfills a housekeeping function in contributing to the folding, maintenance of structural integrity and proper regulation of a subset of cytosolic proteins. A remarkable proportion of its substrates are proteins involved in cell cycle control and signal transduction. Hsp90 acts with a cohort of Hsp90 co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function. The large conformational flexibility of Hsp90 and a multitude of dynamic co-chaperone complexes contribute to generating functional diversity, and allow Hsp90 to assist a wide range of substrates.  相似文献   

20.
Nitrate and nitrite transport in bacteria   总被引:7,自引:0,他引:7  
The topological arrangements of nitrate and nitrite reductases in bacteria necessitate the synthesis of transporter proteins that carry the nitrogen oxyanions across the cytoplasmic membrane. For assimilation of nitrate (and nitrite) there are two types of uptake system known: ABC transporters that are driven by ATP hydrolysis, and secondary transporters reliant on a proton motive force. Proteins homologous to the latter type of transporter are also involved in nitrate and nitrite transport in dissimilatory processes such as denitrification. These proteins belong to the NarK family, which is a branch of the Major Facilitator Superfamily. The mechanism and substrate specificity of transport via these proteins is unknown, but is discussed in the light of sequence analysis of members of the NarK family. A hypothesis for nitrate and nitrite transport is proposed based on the finding that there are two distinct types of NarK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号