首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
R McKay  D DiMaio 《Nature》1981,289(5800):810-813
  相似文献   

2.
P K Sorger  A W Murray 《Nature》1992,355(6358):365-368
In somatic cells, entry into mitosis depends on the completion of DNA synthesis. This dependency is established by S-phase feedback controls that arrest cell division when damaged or unreplicated DNA is present. In the fission yeast Schizosaccharomyces pombe, mutations that interfere with the phosphorylation of tyrosine 15 (Y15) of p34cdc2, the protein kinase subunit of maturation promoting factor, accelerate the entry into mitosis and abolish the ability of unreplicated DNA to arrest cells in G2. Because the tyrosine phosphorylation of p34cdc2 is conserved in S. pombe, Xenopus, chicken and human cells, the regulation of p34cdc2-Y15 phosphorylation could be a universal mechanism mediating the S-phase feedback control and regulating the initiation of mitosis. We have investigated these phenomena in the budding yeast Saccharomyces cerevisiae. We report here that the CDC28 gene product (the S. cerevisiae homologue of cdc2) is phosphorylated on the equivalent tyrosine (Y19) during S phase but that mutations that prevent tyrosine phosphorylation do not lead to premature mitosis and do not abolish feedback controls. We have therefore demonstrated a mechanism that does not involve tyrosine phosphorylation of p34 by which cells arrest their division in response to the presence of unreplicated or damaged DNA. We speculate that this mechanism may not involve the inactivation of p34 catalytic activity.  相似文献   

3.
Lemaître JM  Bocquet S  Méchali M 《Nature》2002,419(6908):718-722
Meiotic maturation, the final step of oogenesis, is a crucial stage of development in which an immature oocyte becomes a fertilizable egg. In Xenopus, the ability to replicate DNA is acquired during maturation at breakdown of the nuclear envelope by translation of a DNA synthesis inducer that is not present in the oocyte. Here we identify Cdc6, which is essential for recruiting the minichromosome maintenance (MCM) helicase to the pre-replication complex, as this inducer of DNA synthesis. We show that maternal cdc6 mRNA but not protein is stored in the oocyte. Cdc6 protein is synthesized during maturation, but this process can be blocked by degrading the maternal cdc6 mRNA by oligonucleotide antisense injections or by translation inhibition. Rescue experiments using recombinant Cdc6 protein show that Cdc6 is the only missing replication factor whose translation is necessary and sufficient to confer DNA replication competence to the egg before fertilization. The licence to replicate is given by Cdc6 at the end of meiosis I, but the cytostatic factor (CSF) pathway, which maintains large amounts of active Cdc2/Cyclin B2, prevents the entry into S phase until fertilization.  相似文献   

4.
Simian virus 40 (SV40) replicates in nuclei of human and monkey cells. One viral protein, large tumour (T) antigen, is required for the initiation of DNA replication. The development of in vitro replication systems which retain this property has facilitated the identification of the cellular components required for replication. T antigen recognizes the pentanucleotide 5'-GAGGC-3' which is present in four copies within the 64 base-pairs (bp) of the core origin. In the presence of ATP it binds with increased affinity forming a distinctive, bilobed structure visible in electron micrographs. As a helicase, it unwinds SV40 DNA bidirectionally from the origin. We report here that in vitro and in the presence of ATP, T antigen assembles a double hexamer, centred on the core origin and extending beyond it by 12 bp in each direction. The assembly of this dodecamer initiates an untwisting of the duplex by 2-3 turns. In the absence of ATP, a tetrameric structure is the largest found at the core origin. In the absence of DNA, but in the presence of ATP or its non-hydrolysable analogues, T antigen assembles into hexamers. This suggests that ATP effects an allosteric change in the monomer. The change alters protein-protein interactions and allows the assembly of a double hexamer, which initiates replication at the core origin.  相似文献   

5.
p53 and DNA polymerase alpha compete for binding to SV40 T antigen   总被引:2,自引:0,他引:2  
J V Gannon  D P Lane 《Nature》1987,329(6138):456-458
The large T antigen (T) of simian virus 40 is a multifunctional protein required for both viral DNA replication and cellular transformation. T antigen forms specific protein complexes with the host protein p53 in both virus-infected and transformed cells. p53 has recently been shown to be an oncogene, but its normal function is not clear. We previously established a radioimmunoassay to study the newly described complex between T antigen and DNA polymerase alpha, and have noted a similarity between the antigenic changes induced in T by the binding of both p53 and polymerase. We now extend this analysis to a larger collection of anti-T antibodies and formally establish that p53 and DNA polymerase alpha can compete for binding to the SV40 T antigen. At a critical concentration of the three components it is possible to detect a trimeric complex of T, p53 and DNA polymerase alpha. Our observations have important implications for the control by these nuclear oncogenes of viral and cellular DNA synthesis and viral host range in both normal and transformed cells. We present a model for the action of p53 in growth control.  相似文献   

6.
J Gautier  T Matsukawa  P Nurse  J Maller 《Nature》1989,339(6226):626-629
Genetic studies in the fission yeast Schizosaccharomyces pombe have established that a critical element required for the G2----M-phase transition in the cell cycle is encoded by the cdc2+ gene. The product of this gene is a serine/threonine protein kinase, designated p34cdc, that is highly conserved functionally from yeast to man2 and has a relative molecular mass of 34,000 (34 K). Purified maturation-promoting factor (MPF) is a complex of p34cdc2 and a 45K substrate that appears in late G2 phase and is sufficient to drive cells into mitosis. This factor has been identified in all eukaryotic cells, and in vitro histone H1 is the preferred substrate for phosphorylation. The increase in the activity of H1 kinase in M-phase is associated with a large increase in total cell protein phosphorylation which is believed to be a consequence of MPF activation. We show here that the H1 kinase activity of p34cdc2 oscillates during the cell cycle in Xenopus, and maximal activity correlates with the dephosphorylated state of p34cdc2. Direct inactivation of MPF in vitro is accompanied by phosphorylation of p34cdc2 and reduction of its protein kinase activity.  相似文献   

7.
A new tropomyosin essential for cytokinesis in the fission yeast S. pombe.   总被引:4,自引:0,他引:4  
Mutations in the Schizosaccharomyces pombe cdc8 gene impair cytokinesis. Here we clone cdc8+ and find that it encodes a novel tropomyosin. Gene disruption results in lethal arrest of the cell cycle, but spore germination, cell growth, DNA replication and mitosis are all unaffected. Haploid cdc8 gene disruptants are rescued by expression of a fibroblast tropomyosin complementary DNA. Immunofluorescence microscopy of wild type and cdc8 gene disruptants indicates that cdc8 tropomyosin is present in two distinct cellular distributions: in dispersed patches, and during cytokinesis as a transient medial band. Collectively these results indicate that cdc8 tropomyosin has a specialized role which, we suggest, is to form part of the F-actin contractile ring at cytokinesis. These results establish the basis for further genetic studies of cytokinesis and of contractile protein function in S. pombe.  相似文献   

8.
cdc2 is a catalytic subunit of a protein kinase complex, called the M-phase promoting factor, that induces entry into mitosis and is universal among eukaryotes. In HeLa cells, cdc2 is shown to be the most abundant phosphotyrosine-containing protein and its phosphotyrosine content is subject to cell-cycle regulation. One site of cdc2 tyrosine phosphorylation in vivo is selectively phosphorylated by pp60c-src in vitro.  相似文献   

9.
Requirement for the replication protein SSB in human DNA excision repair   总被引:40,自引:0,他引:40  
D Coverley  M K Kenny  M Munn  W D Rupp  D P Lane  R D Wood 《Nature》1991,349(6309):538-541
Replication and repair are essential processes that maintain the continuity of the genetic material. Dissection of simian virus 40 (SV40) DNA replication has resulted in the identification of many eukaryotic replication proteins, but the biochemistry of the multienzyme process of DNA excision repair is less well defined. One protein that is absolutely required for semiconservative replication of SV40 DNA in vitro is human single-stranded DNA-binding protein (SSB, also called RF-A and RP-A). SSB consists of three polypeptides of relative molecular mass 70,000, 34,000 and 13,000, and acts with T antigen and topoisomerases to unwind DNA, allowing the access of other replication proteins. Human SSB can also stimulate the activity of polymerases alpha and delta, suggesting a further role in elongation during DNA replication. We have now found a role for human SSB in DNA excision repair using a cell-free system that can carry out nucleotide excision repair in vitro. Monoclonal antibodies against human SSB caused extensive inhibition of DNA repair in plasmid molecules damaged by ultraviolet light or acetylaminofluorene. Addition of purified SSB reversed this inhibition and further stimulated repair synthesis by increasing the number of repair events. These results show that a mammalian DNA replication protein is also essential for repair.  相似文献   

10.
The mechanism of replication of the simian virus 40 (SV40) genome closely resembles that of cellular chromosomes, thereby providing an excellent model system for examining the enzymatic requirements for DNA replication. Only one viral gene product, the large tumour antigen (large-T antigen), is required for viral replication, so the majority of replication enzymes must be cellular. Indeed, a number of enzymatic activities associated with replication and the S phase of the cell cycle are induced upon SV40 infection. Cell-free extracts derived from human cells, when supplemented with immunopurified SV40 large-T antigen support efficient replication of plasmids that contain the SV40 origin of DNA replication. Using this system, a cellular protein of relative molecular mass 36,000 (Mr = 36K) that is required for the elongation stage of SV40 DNA replication in vitro has been purified and identified as a known cell-cycle regulated protein, alternatively called the proliferating cell nuclear antigen (PCNA) or cyclin. It was noticed that, in its physical characteristics, PCNA closely resembles a protein that regulates the activity of calf thymus DNA polymerase-delta. Here we show that PCNA and the polymerase-delta auxiliary protein have similar electrophoretic behaviour and are both recognized by anti-PCNA human autoantibodies. More importantly, both proteins are functionally equivalent; they stimulate SV40 DNA replication in vitro and increase the processivity of calf thymus DNA polymerase-delta. These results implicate a novel animal cell DNA polymerase, DNA polymerase-delta, in the elongation stage of replicative DNA synthesis in vitro.  相似文献   

11.
A novel cyclin encoded by a bcl1-linked candidate oncogene   总被引:145,自引:0,他引:145  
We have previously identified a candidate oncogene (PRAD1 or D11S287E) on chromosome 11q13 which is clonally rearranged with the parathyroid hormone locus in a subset of benign parathyroid tumours. We now report that a cloned human placental PRAD1 complementary DNA encodes a protein of 295 amino acids with sequence similarities to the cyclins. Cyclins can form a complex with and activate p34cdc2 protein kinase, thereby regulating progress through the cell cycle. PRAD 1 messenger RNA levels vary dramatically across the cell cycle in HeLa cells. Addition of the PRAD1 protein to interphase clam embryo lysates containing inactive p34cdc2 kinase and lacking endogenous cyclins allows it to be isolated using beads bearing p13suc1, a yeast protein that binds cdc2 and related kinases with high affinity and coprecipitates kinase-associated proteins. Addition of PRAD1 also induces phosphorylation of histone H1, a preferred substrate of cdc2. These data suggest that PRAD1 encodes a novel cyclin whose overexpression may play an important part in the development of various tumours with abnormalities in 11q13.  相似文献   

12.
Nuclear protein with sequence homology to translation initiation factor eIF-4A   总被引:34,自引:0,他引:34  
M J Ford  I A Anton  D P Lane 《Nature》1988,332(6166):736-738
  相似文献   

13.
A Amon  U Surana  I Muroff  K Nasmyth 《Nature》1992,355(6358):368-371
Progression from G2 to M phase in eukaryotes requires activation of a protein kinase composed of p34cdc2/CDC28 associated with G1-specific cyclins. In some organisms the activation of the kinase at the G2/M boundary is due to dephosphorylation of a highly conserved tyrosine residue at position 15 (Y15) of the cdc2 protein. Here we report that in the budding yeast Saccharomyces cerevisiae, p34CDC28 also undergoes cell-cycle regulated dephosphorylation on an equivalent tyrosine residue (Y19). However, in contrast to previous observations in S. pombe, Xenopus and mammalian cells, dephosphorylation of Y19 is not required for the activation of the CDC28/cyclin kinase. Furthermore, mutation of this tyrosine residue does not affect dependence of mitosis on DNA synthesis nor does it abolish G2 arrest induced by DNA damage. Our data imply that regulated phosphorylation of this tyrosine residue is not the 'universal' means by which the onset of mitosis is determined. We propose that there are other unidentified controls that regulate entry into mitosis.  相似文献   

14.
Zegerman P  Diffley JF 《Nature》2007,445(7125):281-285
Cyclin-dependent kinases (CDKs) drive major cell cycle events including the initiation of chromosomal DNA replication. We identified two S phase CDK (S-CDK) phosphorylation sites in the budding yeast Sld3 protein that, together, are essential for DNA replication. Here we show that, when phosphorylated, these sites bind to the amino-terminal BRCT repeats of Dpb11. An Sld3-Dpb11 fusion construct bypasses the requirement for both Sld3 phosphorylation and the N-terminal BRCT repeats of Dpb11. Co-expression of this fusion with a phospho-mimicking mutant in a second essential CDK substrate, Sld2, promotes DNA replication in the absence of S-CDK. Therefore, Sld2 and Sld3 are the minimal set of S-CDK targets required for DNA replication. DNA replication in cells lacking G1 phase CDK (G1-CDK) required expression of the Cdc7 kinase regulatory subunit, Dbf4, as well as Sld2 and Sld3 bypass. Our results help to explain how G1- and S-CDKs promote DNA replication in yeast.  相似文献   

15.
Cell-free extracts prepared from human 293 cells, supplemented with purified SV40 large-T antigen, support replication of plasmids containing the SV40 origin of DNA replication. A cellular protein (Mr approximately 36,000) that is required for efficient SV40 DNA synthesis in vitro has been purified from these extracts. This protein is recognized by human autoantibodies and is identified as the cell-cycle regulated protein known as proliferating cell nuclear antigen (PCNA) or cyclin.  相似文献   

16.
Tanaka S  Umemori T  Hirai K  Muramatsu S  Kamimura Y  Araki H 《Nature》2007,445(7125):328-332
In eukaryotic cells, cyclin-dependent kinases (CDKs) have an important involvement at various points in the cell cycle. At the onset of S phase, active CDK is essential for chromosomal DNA replication, although its precise role is unknown. In budding yeast (Saccharomyces cerevisiae), the replication protein Sld2 (ref. 2) is an essential CDK substrate, but its phospho-mimetic form (Sld2-11D) alone neither affects cell growth nor promotes DNA replication in the absence of CDK activity, suggesting that other essential CDK substrates promote DNA replication. Here we show that both an allele of CDC45 (JET1) and high-copy DPB11, in combination with Sld2-11D, separately confer CDK-independent DNA replication. Although Cdc45 is not an essential CDK substrate, CDK-dependent phosphorylation of Sld3, which associates with Cdc45 (ref. 5), is essential and generates a binding site for Dpb11. Both the JET1 mutation and high-copy DPB11 by-pass the requirement for Sld3 phosphorylation in DNA replication. Because phosphorylated Sld2 binds to the carboxy-terminal pair of BRCT domains in Dpb11 (ref. 4), we propose that Dpb11 connects phosphorylated Sld2 and Sld3 to facilitate interactions between replication proteins, such as Cdc45 and GINS. Our results demonstrate that CDKs regulate interactions between BRCT-domain-containing replication proteins and other phosphorylated proteins for the initiation of chromosomal DNA replication; similar regulation may take place in higher eukaryotes.  相似文献   

17.
Phosphorylation of non-muscle caldesmon by p34cdc2 kinase during mitosis   总被引:18,自引:0,他引:18  
S Yamashiro  Y Yamakita  H Hosoya  F Matsumura 《Nature》1991,349(6305):169-172
One of the profound changes in cellular morphology which occurs during mitosis is a massive alteration in the organization of the microfilament cytoskeleton. This change, together with other mitotic events including nuclear membrane breakdown, chromosome condensation and formation of mitotic spindles, is induced by a molecular complex called maturation promoting factor. This consists of at least two subunits, a polypeptide of relative molecular mass 45,000-62,000 (Mr 45-62K) known as cyclin, and a 34K catalytic subunit which has serine/threonine kinase activity and is known as cdc2 kinase. Non-muscle caldesmon, an 83K actin- and calmodulin-binding protein, is dissociated from microfilaments during mitosis, apparently as a consequence of mitosis-specific phosphorylation. We now report that cdc2 kinase phosphorylates caldesmon in vitro principally at the same sites as those phosphorylated in vivo during mitosis, and that phosphorylation reduces the binding affinity of caldesmon for both actin and calmodulin. Because caldesmon inhibits actomyosin ATPase, our results suggest that cdc2 kinase directly causes microfilament reorganization during mitosis.  相似文献   

18.
K Segawa  Y Ito 《Nature》1983,304(5928):742-744
Polyoma virus codes for three proteins involved in host cell transformation: the large, middle and small T antigens. Middle T antigen is a major transforming protein which is responsible for the induction of the phenotype of transformed cells and, without it, transformation does not occur (reviewed in refs 1-4). Middle T antigen alone can transform established cell lines, although large, and possibly small, T antigens are also required for the full expression of the phenotype of transformed cells in media with a low concentration of serum. A subfraction of middle T antigen is associated with a protein kinase activity which phosphorylates middle T antigen in vitro on tyrosine. There is a strong correlation between the level of this kinase activity and the degree of expression of the phenotype of transformed cells. We report here that epidermal growth factor (EGF) stimulates tyrosine phosphorylation of middle T antigen, suggesting the possibility that mitogenic growth factor(s) regulates this phosphorylation activity.  相似文献   

19.
J C Labbe  M G Lee  P Nurse  A Picard  M Doree 《Nature》1988,335(6187):251-254
In both starfish and amphibian oocytes, the activity of a major protein kinase which is independent of Ca2+ and cyclic nucleotides increases dramatically at meiotic and mitotic nuclear divisions. The in vivo substrates of this kinase are unknown, but phosphorylation of H1 histone can be used as an in vitro assay. We have purified this kinase from starfish oocytes. The major band in the most highly purified preparation contained a polypeptide of relative molecular mass (Mr) 34,000 (34K). This is the same size as the protein kinase encoded by cdc2+, which regulates entry into mitosis in fission yeast and is a component of MPF purified from Xenopus. Here, we show that antibodies against p34 recognize the starfish 34K protein and propose that entry into meiotic and mitotic nuclear divisions involves activation of the protein kinase encoded by a homologue of cdc2+. Given the wide occurrence of cdc2+ homologues from budding yeast to Xenopus and human cells, this activation may act as a common mechanism controlling entry into mitosis in eukaryotic cells.  相似文献   

20.
D Cantrell  A A Davies  M Londei  M Feldman  M J Crumpton 《Nature》1987,325(6104):540-542
In human T lymphocytes the antigen receptor (Ti) is associated non-covalently on the cell surface with the invariant T3 antigen which comprises 3 chains: two glycosylated polypeptides of relative molecular mass 26,000 (Mr 26K) and 21K (gamma and delta) and one non-N-glycosylated polypeptide of Mr 19K (epsilon). The proposed function of T3 is to transduce the activation signals delivered via the antigen receptor. Recently we have shown that phorbol esters, which stimulate protein kinase C, can induce phosphorylation of the gamma subunit of the T3 antigen. But the critical question is whether T3 phosphorylation occurs as a normal consequence of immune activation of T lymphocytes. In this respect, it has been shown that immune stimulation of murine T cells results in phosphorylation of Ti-associated polypeptides that may be the functional analogues of the human T3 antigen. We have therefore monitored T3 phosphorylation after exposure of human T cells to antigen or phytohaemagglutinin (PHA). The data show that both stimuli initiate phosphorylation of the gamma subunit of the T3 antigen which indicates that T3 phosphorylation is a physiological response to immune activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号