首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Retallack GJ 《Nature》2001,411(6835):287-290
To understand better the link between atmospheric CO2 concentrations and climate over geological time, records of past CO2 are reconstructed from geochemical proxies. Although these records have provided us with a broad picture of CO2 variation throughout the Phanerozoic eon (the past 544 Myr), inconsistencies and gaps remain that still need to be resolved. Here I present a continuous 300-Myr record of stomatal abundance from fossil leaves of four genera of plants that are closely related to the present-day Ginkgo tree. Using the known relationship between leaf stomatal abundance and growing season CO2 concentrations, I reconstruct past atmospheric CO2 concentrations. For the past 300 Myr, only two intervals of low CO2 (<1,000 p.p.m.v.) are inferred, both of which coincide with known ice ages in Neogene (1-8 Myr) and early Permian (275-290 Myr) times. But for most of the Mesozoic era (65-250 Myr), CO2 levels were high (1,000-2,000 p.p.m.v.), with transient excursions to even higher CO2 (>2,000 p.p.m.v.) concentrations. These results are consistent with some reconstructions of past CO2 (refs 1, 2) and palaeotemperature records, but suggest that CO2 reconstructions based on carbon isotope proxies may be compromised by episodic outbursts of isotopically light methane. These results support the role of water vapour, methane and CO2 in greenhouse climate warming over the past 300 Myr.  相似文献   

2.
Liu Z  Herbert TD 《Nature》2004,427(6976):720-723
Many records of tropical sea surface temperature and marine productivity exhibit cycles of 23 kyr (orbital precession) and 100 kyr during the past 0.5 Myr (refs 1-5), whereas high-latitude sea surface temperature records display much more pronounced obliquity cycles at a period of about 41 kyr (ref. 6). Little is known, however, about tropical climate variability before the mid-Pleistocene transition about 900 kyr ago, which marks the change from a climate dominated by 41-kyr cycles (when ice-age cycles and high-latitude sea surface temperature variations were dictated by changes in the Earth's obliquity) to the more recent 100-kyr cycles of ice ages. Here we analyse alkenones from marine sediments in the eastern equatorial Pacific Ocean to reconstruct sea surface temperatures and marine productivity over the past 1.8 Myr. We find that both records are dominated by the 41-kyr obliquity cycles between 1.8 and 1.2 Myr ago, with a relatively small contribution from orbital precession, and that early Pleistocene sea surface temperatures varied in the opposite sense to local annual insolation in the eastern equatorial Pacific Ocean. We conclude that during the early Pleistocene epoch, climate variability at our study site must have been determined by high-latitude processes that were driven by orbital obliquity forcing.  相似文献   

3.
Magnetic reversals and mass extinctions   总被引:1,自引:0,他引:1  
Raup DM 《Nature》1985,314(6009):341-343
Previous analyses of the time distribution of reversals of the Earth's magnetic field have yielded mixed results. Some authors have claimed significant periodicities of order 10(7) yr whereas others have reported failure to reject null hypothesis of random spacing at that scale. Because of repeated suggestions that field reversal is linked to biological extinction, further analysis of the magnetic times series is appropriate. I present here the results of a study of the reversal record of the past 165 Myr. A stationary periodicity of 30 Myr emerges (superimposed on the non-stationarities already established by others), which predicts pulses of increased reversal activity centered at 10, 40, 70, ... Myr BP.  相似文献   

4.
Zhisheng A  Kutzbach JE  Prell WL  Porter SC 《Nature》2001,411(6833):62-66
The climates of Asia are affected significantly by the extent and height of the Himalayan mountains and the Tibetan plateau. Uplift of this region began about 50 Myr ago, and further significant increases in altitude of the Tibetan plateau are thought to have occurred about 10-8 Myr ago, or more recently. However, the climatic consequences of this uplift remain unclear. Here we use records of aeolian sediments from China and marine sediments from the Indian and North Pacific oceans to identify three stages of evolution of Asian climates: first, enhanced aridity in the Asian interior and onset of the Indian and east Asian monsoons, about 9-8 Myr ago; next, continued intensification of the east Asian summer and winter monsoons, together with increased dust transport to the North Pacific Ocean, about 3.6-2.6 Myr ago; and last, increased variability and possible weakening of the Indian and east Asian summer monsoons and continued strengthening of the east Asian winter monsoon since about 2.6 Myr ago. The results of a numerical climate-model experiment, using idealized stepwise increases of mountain-plateau elevation, support the argument that the stages in evolution of Asian monsoons are linked to phases of Himalaya-Tibetan plateau uplift and to Northern Hemisphere glaciation.  相似文献   

5.
Maher KA  Stevenson DJ 《Nature》1988,331(6157):612-614
One possible definition for the origin of life on Earth is the time at which the interval between devastating environmental insults by impact exceeded the timescale for establishing self-replicating proto-organisms. A quantitative relationship for the Hadean (pre-3,800 Myr ago) and Early Archean (3,800 to 3,400 Myr) impact flux can be derived from the lunar and terrestrial impact records. Also, the effects of impact-related processes on the various environments proposed for abiogenesis (the development of life through chemical evolution from inorganic materials) can be estimated. Using a range of plausible values for the timescale for abiogenesis, the interval in time when life might first have bootstrapped itself into existence can be found for each environment. We find that if the deep marine hydrothermal setting provided a suitable site, abiogenesis could have happened as early as 4,000 to 4,200 Myr ago, whereas at the surface of the Earth abiogenesis could have occurred between 3,700 and 4,000 Myr.  相似文献   

6.
Oxidation of the Ediacaran ocean   总被引:4,自引:0,他引:4  
Fike DA  Grotzinger JP  Pratt LM  Summons RE 《Nature》2006,444(7120):744-747
Oxygenation of the Earth's surface is increasingly thought to have occurred in two steps. The first step, which occurred approximately 2,300 million years (Myr) ago, involved a significant increase in atmospheric oxygen concentrations and oxygenation of the surface ocean. A further increase in atmospheric oxygen appears to have taken place during the late Neoproterozoic period ( approximately 800-542 Myr ago). This increase may have stimulated the evolution of macroscopic multicellular animals and the subsequent radiation of calcified invertebrates, and may have led to oxygenation of the deep ocean. However, the nature and timing of Neoproterozoic oxidation remain uncertain. Here we present high-resolution carbon isotope and sulphur isotope records from the Huqf Supergroup, Sultanate of Oman, that cover most of the Ediacaran period (approximately 635 to approximately 548 Myr ago). These records indicate that the ocean became increasingly oxygenated after the end of the Marinoan glaciation, and they allow us to identify three distinct stages of oxidation. When considered in the context of other records from this period, our data indicate that certain groups of eukaryotic organisms appeared and diversified during the second and third stages of oxygenation. The second stage corresponds with the Shuram excursion in the carbon isotope record and seems to have involved the oxidation of a large reservoir of organic carbon suspended in the deep ocean, indicating that this event may have had a key role in the evolution of eukaryotic organisms. Our data thus provide new insights into the oxygenation of the Ediacaran ocean and the stepwise restructuring of the carbon and sulphur cycles that occurred during this significant period of Earth's history.  相似文献   

7.
Yin QZ  Jacobsen SB 《Nature》2006,444(7115):E1; discussion E2-E1; discussion E3
Constraining the timing of the formation of Earth's core, which defines the birth of our planet, is essential for understanding the early evolution of Earth-like planets. Wood and Halliday and Halliday discuss the apparent discrepancy between the U-Pb (60-80 Myr) and Hf-W clocks (30 Myr) in determining the timescale of Earth's accretion and core formation. We find that the information the authors present is at times contradictory (for example, compare Fig. 1 in ref. 1 with Fig. 1 in ref. 2) and confusing and could suggest that the U-Pb clock constrains core formation better than the Hf-W system. Here we point out the limitations of the U-Pb system and show that the U-Pb age cannot be used to argue for protracted accretion and/or core formation (>50 Myr) because this clock only records the processes that occurred during the last 1% of Earth's accretion and core formation in the Wood and Halliday mechanism.  相似文献   

8.
Between 34 and 15 million years (Myr) ago, when planetary temperatures were 3-4 degrees C warmer than at present and atmospheric CO2 concentrations were twice as high as today, the Antarctic ice sheets may have been unstable. Oxygen isotope records from deep-sea sediment cores suggest that during this time fluctuations in global temperatures and high-latitude continental ice volumes were influenced by orbital cycles. But it has hitherto not been possible to calibrate the inferred changes in ice volume with direct evidence for oscillations of the Antarctic ice sheets. Here we present sediment data from shallow marine cores in the western Ross Sea that exhibit well dated cyclic variations, and which link the extent of the East Antarctic ice sheet directly to orbital cycles during the Oligocene/Miocene transition (24.1-23.7 Myr ago). Three rapidly deposited glacimarine sequences are constrained to a period of less than 450 kyr by our age model, suggesting that orbital influences at the frequencies of obliquity (40 kyr) and eccentricity (125 kyr) controlled the oscillations of the ice margin at that time. An erosional hiatus covering 250 kyr provides direct evidence for a major episode of global cooling and ice-sheet expansion about 23.7 Myr ago, which had previously been inferred from oxygen isotope data (Mi1 event).  相似文献   

9.
Wilson PA  Norris RD 《Nature》2001,412(6845):425-429
The middle of the Cretaceous period (about 120 to 80 Myr ago) was a time of unusually warm polar temperatures, repeated reef-drowning in the tropics and a series of oceanic anoxic events (OAEs) that promoted both the widespread deposition of organic-carbon-rich marine sediments and high biological turnover. The cause of the warm temperatures is unproven but widely attributed to high levels of atmospheric greenhouse gases such as carbon dioxide. In contrast, there is no consensus on the climatic causes and effects of the OAEs, with both high biological productivity and ocean 'stagnation' being invoked as the cause of ocean anoxia. Here we show, using stable isotope records from multiple species of well-preserved foraminifera, that the thermal structure of surface waters in the western tropical Atlantic Ocean underwent pronounced variability about 100 Myr ago, with maximum sea surface temperatures 3-5 degrees C warmer than today. This variability culminated in a collapse of upper-ocean stratification during OAE-1d (the 'Breistroffer' event), a globally significant period of organic-carbon burial that we show to have fundamental, stratigraphically valuable, geochemical similarities to the main OAEs of the Mesozoic era. Our records are consistent with greenhouse forcing being responsible for the warm temperatures, but are inconsistent both with explanations for OAEs based on ocean stagnation, and with the traditional view (reviewed in ref. 12) that past warm periods were more stable than today's climate.  相似文献   

10.
Evolution of the atmosphere and oceans   总被引:1,自引:0,他引:1  
Holland HD  Lazar B  McCaffrey M 《Nature》1986,320(6057):27-33
The residence times of most constituents of the atmosphere and oceans are small fractions of the age of the Earth and, in general, their rate of output has been nearly equal to their rate of input. We are disturbing a number of these dynamic equilibria quite severely. The mineralogy of marine evaporites rules out drastic changes in the composition of sea water during the last 900 Myr. The chemistry of soils formed more than 1,000 Myr ago suggests that the atmosphere then contained significantly more CO2 and less O2 than at present. Hydrogen peroxide may well have been the principal oxidant and formaldehyde the main reductant in rain water between 3,000 and 1,000 Myr ago. Major changes in atmospheric chemistry since that time are almost certainly related to the evolution of the biosphere.  相似文献   

11.
Krot AN  Amelin Y  Cassen P  Meibom A 《Nature》2005,436(7053):989-992
Chondrules, which are the major constituent of chondritic meteorites, are believed to have formed during brief, localized, repetitive melting of dust (probably caused by shock waves) in the protoplanetary disk around the early Sun. The ages of primitive chondrules in chondritic meteorites indicate that their formation started shortly after that of the calcium-aluminium-rich inclusions (4,567.2 +/- 0.7 Myr ago) and lasted for about 3 Myr, which is consistent with the dissipation timescale for protoplanetary disks around young solar-mass stars. Here we report the 207Pb-206Pb ages of chondrules in the metal-rich CB (Bencubbin-like) carbonaceous chondrites Gujba (4,562.7 +/- 0.5 Myr) and Hammadah al Hamra 237 (4,562.8 +/- 0.9 Myr), which formed during a single-stage, highly energetic event. Both the relatively young ages and the single-stage formation of the CB chondrules are inconsistent with formation during a nebular shock wave. We conclude that chondrules and metal grains in the CB chondrites formed from a vapour-melt plume produced by a giant impact between planetary embryos after dust in the protoplanetary disk had largely dissipated. These findings therefore provide evidence for planet-sized objects in the earliest asteroid belt, as required by current numerical simulations of planet formation in the inner Solar System.  相似文献   

12.
Thomas DJ 《Nature》2004,430(6995):65-68
The deep-ocean circulation is responsible for a significant component of global heat transport. In the present mode of circulation, deep waters form in the North Atlantic and Southern oceans where surface water becomes sufficiently cold and dense to sink. Polar temperatures during the warmest climatic interval of the Cenozoic era (approximately 65 to 40 million years (Myr) ago) were significantly warmer than today, and this may have been a consequence of enhanced oceanic heat transport. However, understanding the relationship between deep-ocean circulation and ancient climate is complicated by differences in oceanic gateways, which affect where deep waters form and how they circulate. Here I report records of neodymium isotopes from two cores in the Pacific Ocean that indicate a shift in deep-water production from the Southern Ocean to the North Pacific approximately 65 Myr ago. The source of deep waters reverted back to the Southern Ocean 40 Myr ago. The relative timing of changes in the neodymium and oxygen isotope records indicates that changes in Cenozoic deep-water circulation patterns were the consequence, not the cause, of extreme Cenozoic warmth.  相似文献   

13.
The earliest known eutherian mammal   总被引:23,自引:0,他引:23  
Ji Q  Luo ZX  Yuan CX  Wible JR  Zhang JP  Georgi JA 《Nature》2002,416(6883):816-822
The skeleton of a eutherian (placental) mammal has been discovered from the Lower Cretaceous Yixian Formation of northeastern China. We estimate its age to be about 125 million years (Myr), extending the date of the oldest eutherian records with skull and skeleton by about 40 50 Myr. Our analyses place the new fossil at the root of the eutherian tree and among the four other known Early Cretaceous eutherians, and suggest an earlier and greater diversification of stem eutherians that occurred well before the molecular estimate for the diversification of extant placental superorders (104 64 Myr). The new eutherian has limb and foot features that are known only from scansorial (climbing) and arboreal (tree-living) extant mammals, in contrast to the terrestrial or cursorial (running) features of other Cretaceous eutherians. This suggests that the earliest eutherian lineages developed different locomotory adaptations, facilitating their spread to diverse niches in the Cretaceous.  相似文献   

14.
The terrestrial and lunar cratering rate is often assumed to have been nearly constant over the past 3 Gyr. Different lines of evidence, however, suggest that the impact flux from kilometre-sized bodies increased by at least a factor of two over the long-term average during the past approximately 100 Myr. Here we argue that this apparent surge was triggered by the catastrophic disruption of the parent body of the asteroid Baptistina, which we infer was a approximately 170-km-diameter body (carbonaceous-chondrite-like) that broke up 160(-20)+30Myr ago in the inner main asteroid belt. Fragments produced by the collision were slowly delivered by dynamical processes to orbits where they could strike the terrestrial planets. We find that this asteroid shower is the most likely source (>90 per cent probability) of the Chicxulub impactor that produced the Cretaceous/Tertiary (K/T) mass extinction event 65 Myr ago.  相似文献   

15.
LaRiviere JP  Ravelo AC  Crimmins A  Dekens PS  Ford HL  Lyle M  Wara MW 《Nature》2012,486(7401):97-100
Deep-time palaeoclimate studies are vitally important for developing a complete understanding of climate responses to changes in the atmospheric carbon dioxide concentration (that is, the atmospheric partial pressure of CO(2), p(co(2))). Although past studies have explored these responses during portions of the Cenozoic era (the most recent 65.5 million years (Myr) of Earth history), comparatively little is known about the climate of the late Miocene (~12-5 Myr ago), an interval with p(co(2)) values of only 200-350?parts per million by volume but nearly ice-free conditions in the Northern Hemisphere and warmer-than-modern temperatures on the continents. Here we present quantitative geochemical sea surface temperature estimates from the Miocene mid-latitude North Pacific Ocean, and show that oceanic warmth persisted throughout the interval of low p(co(2)) ~12-5 Myr ago. We also present new stable isotope measurements from the western equatorial Pacific that, in conjunction with previously published data, reveal a long-term trend of thermocline shoaling in the equatorial Pacific since ~13?Myr ago. We propose that a relatively deep global thermocline, reductions in low-latitude gradients in sea surface temperature, and cloud and water vapour feedbacks may help to explain the warmth of the late Miocene. Additional shoaling of the thermocline after 5?Myr ago probably explains the stronger coupling between p(co(2)), sea surface temperatures and climate that is characteristic of the more recent Pliocene and Pleistocene epochs.  相似文献   

16.
Throughout the history of the Solar System, Earth has been bombarded by interplanetary dust particles (IDPs), which are asteroid and comet fragments of diameter approximately 1-1,000 microm. The IDP flux is believed to be in quasi-steady state: particles created by episodic main belt collisions or cometary fragmentation replace those removed by comminution, dynamical ejection, and planetary or solar impact. Because IDPs are rich in 3He, seafloor sediment 3He concentrations provide a unique means of probing the major events that have affected the IDP flux and its source bodies over geological timescales. Here we report that collisional disruption of the >150-km-diameter asteroid that created the Veritas family 8.3 +/- 0.5 Myr ago also produced a transient increase in the flux of interplanetary dust-derived 3He. The increase began at 8.2 +/- 0.1 Myr ago, reached a maximum of approximately 4 times pre-event levels, and dissipated over approximately 1.5 Myr. The terrestrial IDP accretion rate was overwhelmingly dominated by Veritas family fragments during the late Miocene. No other event of this magnitude over the past approximately 10(8) yr has been deduced from main belt asteroid orbits. One remarkably similar event is present in the 3He record 35 Myr ago, but its origin by comet shower or asteroid collision remains uncertain.  相似文献   

17.
Long-period astronomical forcing of mammal turnover   总被引:1,自引:0,他引:1  
Mammals are among the fastest-radiating groups, being characterized by a mean species lifespan of the order of 2.5 million years (Myr). The basis for this characteristic timescale of origination, extinction and turnover is not well understood. Various studies have invoked climate change to explain mammalian species turnover, but other studies have either challenged or only partly confirmed the climate-turnover hypothesis. Here we use an exceptionally long (24.5-2.5 Myr ago), dense, and well-dated terrestrial record of rodent lineages from central Spain, and show the existence of turnover cycles with periods of 2.4-2.5 and 1.0 Myr. We link these cycles to low-frequency modulations of Milankovitch oscillations, and show that pulses of turnover occur at minima of the 2.37-Myr eccentricity cycle and nodes of the 1.2-Myr obliquity cycle. Because obliquity nodes and eccentricity minima are associated with ice sheet expansion and cooling and affect regional precipitation, we infer that long-period astronomical climate forcing is a major determinant of species turnover in small mammals and probably other groups as well.  相似文献   

18.
Steinberger B  Torsvik TH 《Nature》2008,452(7187):620-623
The motion of continents relative to the Earth's spin axis may be due either to rotation of the entire Earth relative to its spin axis--true polar wander--or to the motion of individual plates. In order to distinguish between these over the past 320 Myr (since the formation of the Pangaea supercontinent), we present here computations of the global average of continental motion and rotation through time in a palaeomagnetic reference frame. Two components are identified: a steady northward motion and, during certain time intervals, clockwise and anticlockwise rotations, interpreted as evidence for true polar wander. We find approximately 18 degrees anticlockwise rotation about 250-220 Myr ago and the same amount of clockwise rotation about 195-145 Myr ago. In both cases the rotation axis is located at about 10-20 degrees W, 0 degrees N, near the site that became the North American-South American-African triple junction at the break-up of Pangaea. This was followed by approximately 10 degrees clockwise rotation about 145-135 Myr ago, followed again by the same amount of anticlockwise rotation about 110-100 Myr ago, with a rotation axis in both cases approximately 25-50 degrees E in the reconstructed area of North Africa and Arabia. These rotation axes mark the maxima of the degree-two non-hydrostatic geoid during those time intervals, and the fact that the overall net rotation since 320 Myr ago is nearly zero is an indication of long-term stability of the degree-two geoid and related mantle structure. We propose a new reference frame, based on palaeomagnetism, but corrected for the true polar wander identified in this study, appropriate for relating surface to deep mantle processes from 320 Myr ago until hotspot tracks can be used (about 130 Myr ago).  相似文献   

19.
The Colorado plateau is a large, tectonically intact, physiographic province in the southwestern North American Cordillera that stands at ~1,800-2,000?m elevation and has long been thought to be in isostatic equilibrium. The origin of these high elevations is unclear because unlike the surrounding provinces, which have undergone significant Cretaceous-Palaeogene compressional deformation followed by Neogene extensional deformation, the Colorado plateau is largely internally undeformed. Here we combine new seismic tomography and receiver function images to resolve a vertical high-seismic-velocity anomaly beneath the west-central plateau that extends more than 200?km in depth. The upper surface of this anomaly is seismically defined by a dipping interface extending from the lower crust to depths of 70-90?km. The base of the continental crust above the anomaly has a similar shape, with an elevated Moho. We interpret these seismic structures as a continuing regional, delamination-style foundering of lower crust and continental lithosphere. This implies that Pliocene (2.6-5.3?Myr ago) uplift of the plateau and the magmatism on its margins are intimately tied to continuing deep lithospheric processes. Petrologic and geochemical observations indicate that late Cretaceous-Palaeogene (~90-40?Myr ago) low-angle subduction hydrated and probably weakened much of the Proterozoic tectospheric mantle beneath the Colorado plateau. We suggest that mid-Cenozoic (~35-25?Myr ago) to Recent magmatic infiltration subsequently imparted negative compositional buoyancy to the base and sides of the Colorado plateau upper mantle, triggering downwelling. The patterns of magmatic activity suggest that previous such events have progressively removed the Colorado plateau lithosphere inward from its margins, and have driven uplift. Using Grand Canyon incision rates and Pliocene basaltic volcanism patterns, we suggest that this particular event has been active over the past ~6?Myr.  相似文献   

20.
Bouwens RJ  Illingworth GD 《Nature》2006,443(7108):189-192
The first 900 million years (Myr) to redshift z approximately 6 (the first seven per cent of the age of the Universe) remains largely unexplored for the formation of galaxies. Large samples of galaxies have been found at z approximately 6 (refs 1-4) but detections at earlier times are uncertain and unreliable. It is not at all clear how galaxies built up from the first stars when the Universe was about 300 Myr old (z approximately 12-15) to z approximately 6, just 600 Myr later. Here we report the results of a search for galaxies at z approximately 7-8, about 700 Myr after the Big Bang, using the deepest near-infrared and optical images ever taken. Under conservative selection criteria we find only one candidate galaxy at z approximately 7-8, where ten would be expected if there were no evolution in the galaxy population between z approximately 7-8 and z approximately 6. Using less conservative criteria, there are four candidates, where 17 would be expected with no evolution. This demonstrates that very luminous galaxies are quite rare 700 Myr after the Big Bang. The simplest explanation is that the Universe is just too young to have built up many luminous galaxies at z approximately 7-8 by the hierarchical merging of small galaxies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号