首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了实施对地面目标的精确打击,空中飞行器上的雷达首先需要对地面目标精确定位.由于雷达电波在大气中传播时会产生折射误差,因而会影响雷达定位精度.针对有关部门的实际需求,以及目前大气折射误差修正基本上都是基于地基雷达的现状.通过选择高精度的对流层和电离层大气模型,利用全国对流层大气参数和电离层大气浓度剖面建立大气折射率剖面数据库.根据电波传播理论,利用射线描迹法推导出了位于电离层中俯视雷达的大气折射误差修正模型和定位误差模型.仿真实验表明,大气折射效应对高空俯视雷达探测精度影响很大.利用该模型可极大地提高俯视雷达的定位精度,为有效打击地面目标奠定基础.  相似文献   

2.
针对太阳影子定位技术中,由物体影子变化确定拍摄地点和日期的问题,该文通过对影响物体影子长度各因素的分析,确定影子长度关于物体高度、经纬度、太阳高度角等参数的变化规律。由物体影子顶点坐标,以测量影长和计算影长间误差最小为目标,利用最小二乘原理,建立非线性规划模型,结合曲线拟合选取初值,通过穷举搜索算法,确定目标的可能地点和日期,并对拍摄的视频按固定频率提取各帧等预处理,得到测量数据后使用该模型,实现视频数据的定位分析。  相似文献   

3.
该文研究了利用太阳影子进行定位的正演和反演问题。基于太阳下直杆影子长度的变化,利用球面三角函数,建立了影长与日期、时间、经度、纬度、太阳高度角的关系模型,并对此模型进行反演,得到了已知影长变化求解时空定量的方法;并采用定值匹配搜索与最小二乘拟合两种不同算法进行了对比检验,并对此数学模型进行了基于大气折射的误差分析及修正。  相似文献   

4.
研究了提高水下目标定位精度的一种误差修正方法-声线折射修正方法.首先根据水下声线传播环境和声速变化规律建立了海水的折射率球面分层模型.然后基于Snell定理,利用射线描迹方法得到从声源到水下目标的声线传播轨迹,从而建立声线的真实传播距离和角度模型.经与声纳测量系统的测量参数比对,建立了水下目标定位中的声线折射误差修正模型.根据实测的海水声速剖面,利用折射率球面分层模型和声线折射修正模型进行了水下目标定位的数值计算.实验证实,采用声线折射修正方法可以有效地提高水下目标的定位精度.  相似文献   

5.
太阳影子定位是根据物体影子随时间的变化,获取视频拍摄时间和地点的技术.针对太阳影子定位问题,基于直杆影长与杆高构成的直角三角形,建立了影长与时间的函数关系式;利用非线性最小二乘法估计关系式模型中的时间和地点等参数;根据某视频中获取的拍摄数据,采用Matlab技术对数据进行拟合分析,并利用太阳方位角,对拟合得到的影长函数进行回归分析,以完成角度校验.实验结果表明,非线性最小二乘法能够解决太阳影子定位问题,角度验证能够保证建模结果的合理正确性,且此方法简单高效.  相似文献   

6.
受大气折射效应的影响,电波传播路径发生弯曲,传播速度小于光速,给无线电定位系统带来了一定的误差,因此需利用电波折射误差计算软件进行修正.首先通过对常用大气折射误差修正方法的分析,结合实际应用需求,选取了基于地面参数预测的电波折射修正模型.然后进行折射软件修正算法设计,给出了流程图及主要功能实现方法.最后通过模拟数据对该软件修正效果进行检验.结果表明,该软件能够准确、快速显示大气引起的电波折射误差,且能够将误差控制在1%以内.  相似文献   

7.
定位精度是影响GPS卫星导航系统应用的重要因素之一.对时变参数模型TVAR进行了研究,并将其应用于GPS卫星导航系统的定位精度分析,以达到减小定位误差的目的.该方法针对定位序列的统计特性,利用时间序列分析方法建立预测模型,通过前面一段数据拟合的模型预测后面一段时间的数据趋势.数据实验结果验证了利用时变自回归方法进行GPS数据建模分析的有效性和可行性.  相似文献   

8.
雷达电波射线上大气折射率的准确性是提高电波折射误差修正精度的关键因素之一.对下垫面复杂地区的雷达系统,常用的大气球面分层法因没有考虑大气水平方向变化使得电波射线上的折射率具有较大的误差,从而影响了电波折射误差修正精度.针对下垫面复杂地区的三维大气结构,提出了获得电波射线上大气折射率的组合方法,即在雷达所在地采用直接探测法,在其他电波射线上,先计算出射线点的位置,然后再利用已建立的全国大气剖面模型数据库得到该位置的大气折射率,从而较为精确地获得电波射线上的大气折射率.经实验验证,采用组合法获得的电波射线上的折射率不仅具有较好的精度,而且可有效地提高电波折射误差修正精度,进而提高下垫面复杂地区的雷达探测精度.  相似文献   

9.
由于大气介质的不均匀性,导致大气折射率不再是常数,使得激光在大气中传播时产生折射效应,最终使激光束到达角产生误差,影响系统的通信性能.为了减小到达角产生的误差,提高系统的性能,提出了一种利用纯转动拉曼激光雷达修正对流层目标定位误差的方法,根据角度折射误差来调整光源仰角的方法.通过对新方法仿真计算证实,在进行远距离光通信时,经过大气折射误差修正后,可以在很大程度上提高光通信的速率,减小误码率.  相似文献   

10.
在激光半主动末修弹实施弹道修正前,为实时精确得到地面目标相对弹丸的位置,提出利用激光探测器测角信息结合先验弹道的弹丸姿态角和弹道高信息得到目标相对位置的定位算法. 建立了目标定位模型,并利用蒙特卡洛法仿真,分析了弹丸在不同发射角下视角误差、弹丸姿态角误差和弹道高误差对定位精度的影响. 仿真结果表明,弹道高误差对定位精度影响最大,但单项误差因素引起的最大定位误差不超过12 m;弹丸发射角越大,其定位精度相对越高. 提出的目标定位方法简单易行,满足精度和实时性要求.   相似文献   

11.
为了利用无线传感器网络对物体实现更加精确的定位, 通过对接收信号强度指示(RSSI: Received Signal Strength Indicator)定位算法进行仿真与性能分析, 确定了算法的误差来源,讨论了未知节点的邻居锚节点密度对定位精度的影响。根据仿真和数据分析选取合适邻居节点的个数, 进而采用了更加精细的算法即利用RSSI平均值选取最优值剔除失真数据, 以提高定位的精确度。实验结果表明, 在相同的环境下改进算法使定位误差由0~5 m减少到0~1 m, 平均误差由1 m左右减少到0.1 m左右, 提高了定位精度。  相似文献   

12.
为提高无线电测风的精度,在根据二维射线追踪法的基础上,建立了适用于球面分层大气的电波折射高精度在线订正方法,并对电波折射误差及高空风探测误差进行了模拟计算和分析.结果表明,电波折射产生的仰角、斜距和高度误差通常为正值,3类误差均随仰角减小和斜距增大而增大;在低仰角和大斜距的条件下,电波折射误差大于定位设备误差,当仰角低...  相似文献   

13.
根据物体在太阳光下的影子变化数据来判断其所在的地点和日期,是一项具有现实意义的研究。通过分析时角、赤纬角及当地的经纬度与物体影长的物理学关系,将地点的空间定位问题转化为数学上的优化问题并建立模型进行求解。在日期已知时,利用确定性的两阶段空间搜索算法进行模型求解;在日期未知时,改进模型,利用细菌觅食优化算法(bacterial foraging optimization,BFO)进行求解。经检验,两种定位方法的效果均良好,可具体应用于解决现实生活中的地点定位。  相似文献   

14.
提高雷达探测精度的关键因素之一是对电波折射误差进行高精度的修正。针对目前大气折射率线性插值的方法导致电波射线折射率产生较大误差的情况,依据大气折射率随高度变化的规律,提出了样条插值和最小二乘结合的方法。在0~13 km高度范围内利用样条插值得到连续的折射率曲线,在9~60 km高度范围内利用最小二乘方法拟合出折射率连续的曲线。将样条插值和最小二乘拟合方法得到的折射率与分段插值的折射率、实际探测的大气折射率进行对比,证明样条插值具有较高的精度,最小二乘拟合函数具有计算简便、误差小的优点;将实际探测数据与由样条插值和最小二乘法得到的大气折射率折射误差进行比较,证明了样条插值和最小二乘法可有效提高电波折射修正精度。  相似文献   

15.
针对阳光下物体影子变化的过程,分析时序数据确立特定物体所在地。运用三角函数关系与太阳高度角决定公式确立影长决定公式,最小二乘法确立影长变化函数,日期时间已知时使用正午太阳高度角与逆推影长决定公式得特定物体所在地的经度和纬度,仅时间已知使引入半昼长计算公式与简便正午太阳高度角计算公式联立,得到经纬度推算出日期,最后处理视频得到影长变化数据再计算如前,通过视频中特定物体影长的变化确立视频拍摄日期与地点。  相似文献   

16.
利用太阳高度角的正弦表达式,推导出物体影长与太阳高度角、当地经纬度和赤纬角的数学公式。据此,利用视频数据中物体影长变化规律,以及摄像机成像原理,建立最小二乘法约束规划数学模型,确定视频拍摄地点和日期。最后,讨论了此方法在现实生活的一些应用。  相似文献   

17.
为了提高大型数控机床的光栅定位精度,提出了基于热特性分析的光栅定位热误差建模理论及补偿方法.阐述了光栅受热膨胀产生热伸长从而导致定位偏差的机理,并对光栅定位误差产生的影响及表现形式进行了说明.建立了光栅热伸长量和温升量的线性关系表达式.在光栅尺上均匀布置多个温度传感器,实时采集光栅尺多点温度,通过插值运算,拟合出光栅尺各点的温度值.由于在机床运动过程中,光栅尺各点的温升量不尽相同,采用对光栅尺各点温升量积分的方法,求出光栅各点热伸长量,建立了光栅定位热误差模型.利用自主研发的数控机床误差补偿系统,应用光栅定位热误差模型,对落地镗床TK6920进行光栅尺定位热误差补偿.结果显示:光栅定位热误差模型对运动过程中的光栅定位误差进行准确的预测,补偿后残差控制在15μm以内,定位精度提升90%以上,显著提高了光栅的定位精度.  相似文献   

18.
为提高预警机战场自卫能力,大幅扩展其探测范围以提高预警反应时间,建立预警机与无人机协同的空基分布式探测系统是一种可行途径.针对该分布式协同探测的定位精度问题,以一发两收的典型分布式几何模型和分布式定位方程为基础,推导了多平台融合的定位精度数学表达式.结合仿真实验,着重分析了时间同步误差、俯仰角误差和方位角误差对协同探测系统定位精度的影响,结果表明时间同步误差、方位角和俯仰角误差等对目标的定位精度有较大的影响.通过分布式多平台数据的融合检测和估计提高了目标的定位精度,尤其是改善了基线区的定位精度,为空基分布式协同探测系统的研究提供理论基础.  相似文献   

19.
Hopfield大气模型的精度分析   总被引:2,自引:2,他引:2  
给出了对流层电波折射误差修正应用中的霍普菲尔德大气模型和精确大气模型.经过仿真可见霍普菲尔德大气模型在我国各典型地区应用时比精确大气模型的误差大得多,尤其在离地高度0.5~7.0 km范围内最为明显,因此在我国对电波折射误差修正时最好不采用霍普菲尔德大气模型.  相似文献   

20.
为了提高机器人的绝对定位精度,建立了机器人绝对定位误差模型并进行了补偿方法研究.将定位误差分为几何参数误差与柔度误差,分别建立相应的误差模型.几何参数误差研究以MD-H(修正型D-H)运动模型为基础,对柔度误差的影响进行了解耦,并考虑了机器人基坐标系与测量坐标系的转换误差,提出了基于相对位置的几何参数误差模型.柔度误差研究针对机器人的构造特点,建立了针对关节2和3的误差模型,简化了计算模型.最后基于所建立的两种误差模型,提出了误差补偿方法,并采用该方法对机器人进行了实际补偿实验.结果表明,平均绝对定位精度由补偿前的1.173 mm降至补偿后的0.158 mm,说明文中方法可有效提高机器人的绝对定位精度,扩展机器人的应用范围.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号