首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以聚ε-己内酯(PCL)为溶质,二甲基甲酰胺(DMF)和二氯甲烷(DCM)为溶剂,制备静电纺丝溶液.采用正交试验法研究静电纺溶液中PCL质量浓度、溶剂中DMF体积分数和静电纺电压值3个因素对纤维的形态和直径、纤维膜的孔隙率和表面积-体积比的影响,并对纤维膜的力学性能进行了测试.结果表明:溶剂中DMF体积分数对纤维膜结构影响最为显著,其次是静电纺电压,PCL质量浓度影响最小;PCL质量浓度为0.180g/mL时,静电纺纤维膜中纤维粗细最为均匀;PCL质量浓度、DMF体积分数和静电纺电压的最优水平分别为0.165g/mL、43%、15kV;随着PCL质量浓度增大,PCL大分子链增多,分子间作用力增大,纤维膜拉伸强力增大.  相似文献   

2.
为了研究魔芋葡甘聚糖/纳米Fe_3O_4_静电纺丝膜,运用流变仪分析纳米Fe_3O_4对KGM溶胶流变性能的影响,以期为制备复合的纺丝液的浓度和配比提供了指导。结果表明:KGM/纳米Fe_3O_4复合溶胶是一种假塑性流体;复合溶胶的粘度、线性粘弹区域范畴、屈服应力值、模量等四个指标均与纳米Fe_3O_4掺杂比的掺杂比呈正比关系,从剪切性质分析其体系纳米Fe_3O_4质量浓度不应超过1.2%。通过频率扫描分析,纳米Fe_3O_4与KGM之间存在相互作用,随着纳米Fe_3O_4粒子含量的增加使得与KGM作用增加,从而使体系形成稳定网络结构,使复合溶胶的稳定性更高,因此将魔芋葡甘聚糖/纳米Fe_3O_4制备静电纺丝膜具有一定可行性。  相似文献   

3.
利用静电纺丝方法制备了聚己内酯(PCL)/石墨烯复合纳米纤维,对电纺纳米纤维的表面微观形貌、热性能和力学性能等进行了表征,并研究了石墨烯的加入量、PCL浓度、电纺电压、接收距离等参数对复合纤维性能的影响.研究结果表明:当加入石墨烯质量分数为0.27%时,得到的电纺纳米纤维的力学性能提高最大,拉伸强度增加48.6%,杨氏模量增加66.0%;当PCL质量分数为11%,电纺电压为28kV,接收距离为35cm,电纺液流速为6mL/h时,电纺过程稳定,可以得到直径均匀的纳米纤维.  相似文献   

4.
为了提高聚丙烯腈(PAN)纤维的抗静电性能,以聚丙烯腈原丝为基料,N,N-二甲基乙酰胺(DMAC)为溶剂配制了聚丙烯腈纺丝液。然后通过超声波及机械搅拌的方法将不同质量分数的导电性能良好的纳米氧化锌(Zn O)分散在聚丙烯腈纺丝液中,配制成PAN/Zn O二元复合纺丝液,采用高压静电纺丝技术制备具有抗静电性能的PAN/Zn O纳米复合纤维。研究了PAN纺丝液、PAN/Zn O二元复合纺丝液的可纺性以及不同质量分数的纳米氧化锌对PAN/Zn O纳米复合纤维膜的结晶度及体积比电阻的影响。结果表明:纺丝液的可纺性较好,在体积分数为12%,纺丝电压为18k V,接收距离为15 cm,推进速度为0.000 5 mm/s的条件下进行静电纺丝,可以得到纤维直径均匀,纤维平行伸直度良好,表面光滑的PAN纳米纤维;随着纳米氧化锌质量分数的提高,PAN/Zn O纳米复合纤维表面变得粗糙,但结晶度无明显变化,体积比电阻减小,抗静电性能提高。  相似文献   

5.
采用两步法以油酸为表面活性剂对纳米Fe_3O_4磁性粒子进行表面修饰,制备出稳定的Fe_3O_4油基磁性流体。通过透射电镜(TEM)、X射线衍射仪(XRD)、红外光谱(FT-IR)、振动样品磁强计(VSM)对油酸修饰后的纳米Fe_3O_4磁性粒子的形貌、结构与磁性能进行了表征。结果表明,在表面活性剂存在时,可以有效地减少纳米Fe_3O_4磁性粒子之间的团聚,同时使油基磁性流体具有良好的稳定性和发热性;纳米Fe_3O_4磁性粒子的饱和磁化强度为66.35 A·m2/kg,剩余磁化强度为0,具有超顺磁性;在外加交变磁场下,纳米Fe_3O_4油基磁性流体在20 min时,发热温度可达55.9℃。  相似文献   

6.
采用静电纺丝法制备了PVP/Zn(Ac)2复合纳米纤维,利用扫描电子显微镜对其表面形貌进行了表征.研究了PVP含量、纺丝电压、乙酸锌含量等因素对纺丝过程和纤维形貌的影响,同时分析了不同参数引起纤维形貌变化的原因.结果表明,当2mL乙醇中PVP的含量为0.248g,2.5mL DMF中乙酸锌的含量为0.501g,纺丝电压为17kV时,可以得到平均直径为180nm、表面光滑而且连续性很好的PVP/Zn(Ac)2复合纳米纤维,实现了ZnO前驱体纳米纤维的可控制备.  相似文献   

7.
水溶性磁性Fe_3O_4纳米颗粒由于其良好的生物相容性、超顺磁性等特征,在生物领域常被用来作为磁性载体材料,其广泛的生产和应用增加了它们在环境中释放的可能性,需对其环境生物安全性进行评价.首先合成了水溶性磁性Fe_3O_4纳米纳米粒子,并用透射电子显微镜和马尔文粒度分析仪对其进行形貌分析和表征.然后在不同的浓度下(0、0.72、1.44、3.6 mg/mL)研究了水溶性磁性Fe_3O_4纳米粒子对小麦生长的影响,结果显示随着浓度的增加,磁性Fe_3O_4纳米纳米粒子对小麦生长的抑制越明显,造成生长抑制和根结构损伤.结果证明了水溶性磁性Fe_3O_4纳米颗粒对小麦植物存在一定的生物毒性,其环境排放应该严格限制.  相似文献   

8.
以氯铂酸为氧化剂、Fe_3O_4纳米粒子为载体、血红蛋白(Hb)为模型蛋白,利用多巴胺(DA)氧化聚合生成聚多巴胺(PDA),同时氯铂酸还原为铂纳米粒子(Pt NPs)的性质,一步法合成了Fe_3O_4/PDA-Pt NPs-Hb复合磁性纳米粒子。将Fe_3O_4/PDA-Pt NPs-Hb固定于磁性玻碳基底表面制得Fe_3O_4/PDA-Pt NPs-Hb/MGC电极。对固定在Fe_3O_4/PDA-Pt NPs-Hb复合磁性纳米粒子中的Hb在电极上的直接电化学行为进行了研究,结果表明Fe_3O_4/PDA-Pt NPs-Hb复合磁性纳米粒子不仅能简便地固定在电极表面,而且能有效地促进Hb与电极表面的直接电子转移。此外,Fe_3O_4/PDA-Pt NPs-Hb/MGC电极对H_2O_2有很好的电催化活性,在6.6~72.6μM范围内具有良好的线性响应,检测限达3.92μM(S/N=3)。  相似文献   

9.
以苯乙烯-丁二烯-苯乙烯(SBS)和过氧化氢为原料,制备环氧基质量分数为10%的环氧化SBS(ESBS).利用红外光谱对ESBS结构进行表征.通过研究纺丝溶剂、纺丝液质量分数、外加电压和接收距离等对纤维形态结构的影响,制备纳米级到微米级ESBS电纺纤维.结果表明四氢呋喃(THF)和N,N-二甲基甲酰胺(DMF)混合溶剂是电纺ESBS的优良溶剂.在THF/DMF(质量比=3∶1)纺丝溶剂,纺丝液质量分数为10%,外加电压23kV及接收距离28cm时,所制得ESBS电纺纤维形态较好,纤维平均直径为302nm,最小直径可达70nm.  相似文献   

10.
首先以共沉淀法制备了磁性纳米颗粒Fe_3O_4并在表面包覆SiO_2,制得Fe_3O_4@SiO_2磁性纳米颗粒.然后由PBLG水解制得PGA为共聚组分,过硫酸铵为引发剂,EGDMA为交联剂,使用自由基共聚制备交联共聚物,同时加入Fe_3O_4@SiO_2纳米颗粒,制备得到Fe_3O_4@SiO_2@PGA磁性纳米粒子.通过核磁(~1H-NMR),红外(FT-IR),X-射线衍射(XRD),动态光散射(DLS)和透射电镜(TEM)等一系列手段对磁性纳米粒子的结构和形貌进行了表征,初步证明了制备的样品具有稳定的结构和良好的磁性.  相似文献   

11.
提出一种采用共沉淀法制备三维多孔Fe_3O_4纳米花的合成方法,对Fe_3O_4纳米花的自组装演化过程进行了研究.结果发现,尿素浓度是影响Fe_3O_4前驱体形貌的关键因素,通过调节制备条件可以获得具有纳米花形貌的Fe_3O_4纳米颗粒,Fe_3O_4纳米花作为磁性多孔微球具有更高的比表面积.磁性测试结果表明,Fe_3O_4纳米花在室温下具有超顺磁性且具有较高的饱和磁化强度.该材料是一种具有较好应用前景的磁性纳米材料.  相似文献   

12.
实验研究了不同体积分数Fe_3O_4/Water纳米流体在磁场作用下的水平小圆管内的湍流流动对流换热特性,测量了体积分数为3%的Fe_3O_4/Water纳米流体的沿程压力降并计算了其能量比率,探讨了在磁场作用下纳米流体强化对流换热的机制.实验结果表明:Fe_3O_4/Water纳米流体的对流换热系数随着体积分数的增加而升高,其平均值最大提高了4.3%;在与流动方向垂直的匀强磁场作用下,当磁场强度为23.809和39.682 kA/m时,纳米流体的换热系数几乎没有提高,当磁场强度为63.492 A/m时,换热系数有所提高,其平均值最大提高了3%;Fe_3O_4/Water纳米流体的沿程压力降相对于基液去离子水增加了50%,外加磁场使其进一步增大,并随着磁场强度的增加而增大,当磁场强度为63.492 A/m时增加了11.3%;Fe_3O_4/Water纳米流体相对于基液去离子水的能量比率计算值小于1,说明添加Fe_3O_4纳米粒子没有达到节能的效果.  相似文献   

13.
以Fe_3O_4磁性纳米粒子、Cu(NO3)2·3H2O和均苯三甲酸为主要原料合成了一种新型磁性MOFs复合材料-Fe_3O_4@HKUST-1,对其进行XPS、SEM、XRD以及FT-IR表征分析,结果显示该复合材料形貌结构是以Fe_3O_4磁性纳米粒子为核,HKUST-1将其包裹在内.以Fe_3O_4@HKUST-1作为吸附剂,研究不同环境条件下(pH、浓度和吸附时间)对铀的吸附影响.在pH为4的条件下,铀在Fe_3O_4@HKUST-1上有较高的吸附量.Fe_3O_4@HKUST-1对U(Ⅵ)的吸附符合二级动力学模型以及Langmuir等温吸附模型.研究结果表明,Fe_3O_4@HKUST-1对水中U(Ⅵ)有着良好的吸附能力,可作为一种高效的铀吸附材料.  相似文献   

14.
四氧化三铁(Fe_3O_4)是一种重要的铁氧体,由于具备优良的物理化学性质被广泛应用于各个领域.在趋磁细菌内存在的磁小体主要是由20~100 nm的单畴Fe_3O_4和Fe_3S_4组成,通常为立方体和立方八面体形状.制备了尺寸均匀的亚铁磁性立方体形状Fe_3O_4纳米颗粒,利用透射电子显微镜(TEM)、X射线衍射仪(XRD)、SQUID-VSM磁性测量系统研究了保护气氛对Fe_3O_4形貌和磁性的影响.  相似文献   

15.
利用浸渍法制备Pd/Fe_3O_4负载型磁性纳米催化剂并对其进行表征,研究Pd/Fe_3O_4在碘苯与苯乙炔的Sonogashira偶联反应中的催化性能.结果表明:在100℃、DMF为溶剂、K_2CO_3为碱源的反应条件下, Pd的负载量摩尔分数为13.7%时, Pd/Fe_3O_4的催化活性最高;其催化活性与负载的纳米Pd粒径有关, Pd粒径为3.56 nm时催化性能最佳;利用外磁场分离回收催化剂,循环使用5次后,其催化产率为75.3%,仍有较高的催化活性.  相似文献   

16.
以聚乙烯吡咯烷酮(PVP)和乙酸镍(NiC_4H_6O_4·4H_2O)为主要原料,采用静电纺丝技术分别制备纯氧化镍(NiO)纳米纤维及还原氧化石墨烯(rGO)/NiO复合纳米纤维.利用X射线衍射仪、扫描电子显微镜和透射电子显微镜对材料的结构和形貌进行了表征.透射电子显微镜观察结果直观证实了rGO/NiO复合纳米纤维中rGO成分的存在,而且rGO复合对NiO纳米纤维的晶体结构及形貌均无明显影响.以H_2S为主要目标气体,研究了rGO复合对NiO纳米管纤维气敏性能的影响,发现rGO复合显著提高了NiO纳米纤维对H_2S气体的敏感性,特别是1.0%rGO复合量的NiO纳米纤维对H_2S气体具有最佳的气敏性能,其对体积分数为10×10~(-6)的H_2S气体的室温灵敏度可达167.11,是纯NiO纳米纤维的23.8倍.  相似文献   

17.
利用静电纺丝法制备了可用于抗菌口罩滤芯层的氧化锌-左旋聚乳酸/左旋聚乳酸(ZnO-PLLA/PLLA)复合纳米纤维膜.以纤维膜的过滤性和透气性为指标,通过正交实验分析了ZnO-PLLA/PLLA共混比例、质量分数、混合溶剂中二氯甲烷/N,N-二甲基甲酰胺(DCM/DMF)的质量比例、纺丝流速、纺丝电压及纺丝时间这6个实验因素对纳米纤维膜性能的影响,优化的制备参数为ZnO-PLLA/PLLA的质量分数为8%.其中,ZnO负载量为2%,DCM/DMF质量比为6.5∶1,纺丝电压为9 kV,流速为0.004 mm/s,时间为30 min,优化条件下制备纳米纤维粗细分布比较均匀,过滤和透气性能测试结果均达到国标医用防护口罩技术要求.  相似文献   

18.
以共沉淀法制备得到了Fe_3O_4磁性纳米粒子,以溶胶-凝胶法得到了包裹罗丹明6G的氨基硅烷修饰的荧光磁性复合纳米粒子(Fe_3O_4/R6G)@SiO_2-APTES,以动态光散射法(DLS)测定了复合纳米粒子的水合粒径,以IR光谱、荧光光谱等手段对得到的复合纳米粒子进行了表征,并以琼脂糖凝胶电泳研究了(Fe_3O_4/R6G)@SiO_2-APTES对DNA的损伤行为。研究结果表明这类氨基硅烷修饰的荧光磁性复合纳米粒子在水中具有很好的分散性和稳定性,且有良好的生物相容性,有望成为一种新的抗癌药物载体。  相似文献   

19.
采用静电纺丝法制备了PA6/PVA复合纳米纤维.分析了不同质量比的PA6/PVA共混纺丝溶液的粘度、电导率、表面张力,并探讨其静电纺丝效果.采用扫描电镜、红外光谱、表面张力仪等对纳米纤维膜的形貌结构、成分相容性及亲水性能进行表征.结果表明,在纺丝电压为19kV、纺丝距离为20cm、丝液流量为0.2mL/h的条件下,共混溶液质量比为12%∶4%时的静电纺丝所得纤维具有良好的形貌,复合纳米纤维中PA6与PVA具有良好的相容性,并有效地克服了纯纺PVA纳米纤维在水溶液中出现的过度溶胀问题.  相似文献   

20.
通过水热法制备Fe_3O_4磁性纳米微球,以此为核包覆TiO_2,并将核壳结构的TiO_2/Fe_3O_4附着在还原氧化石墨烯(RGO)片层结构上;利用扫描电镜(SEM)、透射电镜(TEM)、N2吸附-脱附、X射线衍射仪(XRD)、震动样品磁强计(VSM)和X射线光电子能谱(XPS)表征了RGO/TiO_2/Fe_3O_4磁性复合纳米材料的形态结构、包覆情况、磁性和元素种类,同时考察了该催化剂在紫外光照射下催化脱色甲基橙的效果。实验结果表明,TiO_2均匀地包覆在Fe_3O_4表面,RGO/TiO_2/Fe_3O_4磁性复合纳米材料的比饱和磁化强度为19.0emu/g。以甲基橙的水溶液为模拟污染物,紫外光照射90min后RGO/TiO_2/Fe_3O_4复合纳米材料对甲基橙的脱色率达到91%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号