首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
光固化3D打印制备陶瓷和熔模铸造消失模技术近年来得到市场的青睐,现将技术涉及的关键工艺及研究进展进行整理.光固化3D打印制备陶瓷技术涉及到制备浆料、光固化成型和烧结等过程,每一步都会影响最终陶瓷产品的质量.光固化3D打印制备消失模技术的成功应用,对于缩短陶瓷型壳制造周期、提高熔模铸造生产效率具有重要意义,但阻碍光固化成型熔模铸造制备陶瓷型壳市场化的技术难点在于获得膨胀率低和残留低的聚合物树脂配方.  相似文献   

2.
我们通常把3D打印技术又称为快速成型技术,但事实上,二者还是有少许区别的——快速成型技术主要是指3D打印技术的形状打印功能,即“制造模型”——这也是目前3D打印技术应用得最多的领域。而3D打印技术的概念却不止于此,3D打印的概念涵盖了制造产品的全过程。  相似文献   

3.
随着生物陶瓷材料在硬组织工程上的广泛研究与应用,3D打印精加工技术也应运而生.综述了常规的几种生物医用陶瓷材料,包括氧化锆陶瓷、氧化铝陶瓷、二氧化钛陶瓷、磷酸三钙陶瓷、羟基磷灰石陶瓷、硅酸钙陶瓷,从3D打印的角度阐述了这些支架材料的特性及技术优势,并对该技术在生物医学工程领域上的应用进行了展望.  相似文献   

4.
正近年来,3D打印技术在制造行业掀起了一股热潮,该技术应用的范围甚广,如玻璃仪器、纺织制品、食品、国防以及航空等工业领域,且在生物医学等复杂的领域也逐渐应用到3D打印技术。3D打印技术是通过电脑三维设计软件,利用分层离散技术和数控成型系统,将各种物品的特殊材料进行构造从而制造出各种产品。该技术最早由美国麻省理工学院开发。对  相似文献   

5.
3D打印以其个性化定制的独特优势近年来在医疗修复领域迅速发展,挤出自由成型(EFF)工艺通过陶瓷膏体的分层堆积可以实现陶瓷义齿的定制化3D打印.以氧化锆为原料进行EFF系统的挤出成型工艺研究,主要从挤出丝、片层、立体模型3个方面探究了扫描速度对ZrO_2陶瓷膏体3D打印尺寸精度的影响.结果表明:扫描速度与打印制件精度的匹配存在最佳值,过快或过慢的扫描速度都不利于陶瓷膏体的成型;当扫描速度V_s=2 mm/s时打印的挤出丝、片层、立体模型尺寸误差小,打印精度较高.  相似文献   

6.
3D打印技术结合数字化技术在医学中的应用   总被引:1,自引:0,他引:1  
3D打印技术(又称快速成型技术或增材制造技术),目前在社会各领域的应用越来越广泛,被誉为是“第三次工业革命的标志”,将成为改变未来世界新的创造性科技,使人类即将进入“点击制造”时代。3D打印技术的原理是通过分层制造、叠加成形的方式逐层增加材料将计算机模型数据“打印”形成3D实物。  相似文献   

7.
3D打印制造技术是当前制造领域中重点的基础性技术,如何更好地运用3D打印制造技术,打造制造业未来发展的新空间和新环境已经成为核心性的问题。该研究以3D打印制造技术的制造业应用作为平台,从制造业的角度分析3D打印制造技术的概念,阐述了制造业转型过程中3D打印制造技术的重要功能,提供了新时期推进3D打印制造技术在制造业全面应用,更好发挥3D打印制造技术价值与功能的对策和建议。  相似文献   

8.
3D打印于上世纪80年代诞生于美国,学名是"快速成型技术",也被称为"增材制造技术",是将设计好的物体转化为三维设计图,采用分层加工、叠加成形的方式逐层增加材料来打印真实物体.其工作原理与传统打印原理类似,只不过3D打印机不用纸与墨,而是用塑料、金属、陶瓷、沙子等材料做成粉状后充当"墨水"进行打印.3D打印不再需要传统的刀具、夹具和机床就可以打造出任意形状.  相似文献   

9.
《安徽科技》2015,(5):55-56
<正>最近几年,3D打印的曝光度越来越高,我们不时可以从媒体上看到各种3D打印的消息:3D打印房屋、3D打印汽车、3D打印骨骼,甚至3D打印食物……3D打印吸引了大众的普遍关注。那么——什么是3D打印3D打印技术出现在20世纪90年代中期,是快速成型技术的一种,它是一种以数字模型文件为基础,运用粉末状金属、陶瓷、砂或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。  相似文献   

10.
4D打印技术是结合了3D打印技术和智能材料的一种智能结构增材制造技术,形状记忆聚合物材料在4D打印领域中具有巨大的应用潜力.该文阐述了4D打印原理及常用的4D打印材料,基于4D打印材料的不同响应方式,列举相关典型期刊和专利对现有以形状记忆聚合物材料为原料的4D打印材料的技术发展动向进行论述,对4D打印聚合物材料发展面临的难点问题进行总结,并预测了该领域未来的发展方向.  相似文献   

11.
本刊记者曾经多次采访广东省增材制造协会会长、华南理工大学教授杨永强,撰写了《广东抢占3D打印产业发展先机——中国3D打印技术产业联盟副理事长、华南理工大学杨永强教授专访》《华南理工大学:金属3D打印技术领域的翘楚》和《杨永强:冷眼看3D打印热潮》3篇文章。这3篇文章介绍了3D打印的发展前景及广东3D打印技术产业化的优势和制约因素,阐明了杨永强教授对广东进一步推进3D打印技术产业化、抢占3D打印技术产业高地的建议;报道了华南理工大学在金属3D打印技术的研发以及在生物医学领域实现产业化等成果;揭开3D打印的神秘面纱,展示热潮背后的冷静思考。今天,我们再次邀请杨永强教授介绍了近年增材制造产业扶持政策、广东省增材制造协会的工作及进一步推动增材制造产业发展的建议;同时,作为我国金属增材制造领域的重要专家、学者,杨永强教授还介绍了金属增材制造的应用及发展趋势。  相似文献   

12.
3D打印技术作为一种快速成型技术迅猛发展,并且正迅速改变着人们的生产生活方式。文章简要的说明了锂离子电池的发展需求和3D打印技术在该领域的优势,并且对3D打印电极材料以及国内外3D打印锂电池的发展现状进行了比较系统的介绍。最后,基于制备高能量密度和高功率密度的锂离子电池,分析了现今所存在的问题及发展方向,并对未来锂电池的制造与产业发展进行了前景展望。  相似文献   

13.
3D打印金属材料研究进展   总被引:1,自引:0,他引:1  
3D打印技术是快速原型制造技术的一种,也被称为增材制造技术,被誉为"第三次工业革命"的核心技术,其中金属3D打印被认为是将来制造业的主导方向.金属粉末材料是金属打印的物质基础,同时也是3D打印技术发展的突破点.综述了3D打印金属粉体材料的研究现状,重点介绍了钛合金、铝合金、不锈钢、高温合金和镁合金等5种金属粉体材料在3D打印技术中的应用,并对金属粉体材料的运用进行总结和展望.  相似文献   

14.
随着3D打印技术的飞速发展和广泛应用,能够模仿和制造的生物仿生结构越来越多样化.简单介绍了现有的3D打印技术,并从结构、功能、医用和智能材料等方面综述了3D打印技术结合仿生领域的研究成果,如贝壳珍珠层、龙虾螯棒、鲨鱼皮、荷叶、血管网络和义肢等;最后讨论了3D打印技术在仿生领域面临的挑战和发展前景.  相似文献   

15.
3D打印技术被称为快速成型技术,也称为增材制造技术,是一种以数字模型文件为基础,运用粉末状金属、塑料等可粘合材料,通过逐层打印的方式来构造物体的快速成型技术。2012年4月,英国《经济学人》刊文认为,3D打印技术将与其他数字化生产模式一起,推动第三次工业革命的实现。美国等发达国家高度重视3D打印技术,甚至将其提升到国家战略层面。  相似文献   

16.
近年来3D打印技术得到飞速发展,并且在社会生活的多个领域得到广泛应用。3D打印技术是一种高新的制造技术,对于工业发展起到革命性作用,此外3D技术也是实际制造业的发展前景所在。本文着重分析了3D打印技术的优势所在,并进一步分析了3D打印技术的发展前景。  相似文献   

17.
随着科学技术的进步,一些先进的技术在实践教学当中也得到了广泛应用。其中,在3D打印技术方面的应用上,作为新的快速成型技术,结合了多种先进技术。3D打印技术在当前的诸多领域都得到了应用,为人们的生活带来了很大的方便。基于此,该文主要就3D打印技术的特征体现以及原理加以分析,然后对3D打印技术在实践教学中的应用作用和具体应用详细探究,希望能通过该理论研究,对实践教学的进一步发展起到促进作用。  相似文献   

18.
具有光滑过渡的复杂分叉节点的建模和3D打印是该类节点实现先进设计和智能制造的关键,本文用SolidWorks的特征造型功能实现了具有光滑过渡外型的节点的建模,然后分别利用3D打印技术的FDM和SLM工艺将其打印成型.研究结果表明:基于SolidWorks和3D打印的建模制造一体化技术可以有效解决复杂节点采用传统的铸造工艺难以生产的问题,实现节点设计制造的智能化.  相似文献   

19.
在生物医药领域,通过对生物材料或活细胞进行3D打印,可构建复杂生物三维结构如个性化植入体、可再生人工骨、体外细胞三维结构体、人工器官等,因而基于生物3D打印在个性化定制及复杂结构调控制造上的独特优势,综述了生物3D打印技术的基本工艺、应用领域与研究进展.重点针对3D打印生物材料这一研究热点,全面讨论了喷墨打印和注射挤出打印两种路径,分析总结了3D打印相关生物材料并应用于体外模型、医疗器械和植入体的制造以及可降解组织支架、细胞三维结构体的构建,最后对该技术未来发展趋势和研究重点提出展望.  相似文献   

20.
3D打印技术是一种革命的、先进的加工制造技术,已经正在快速改变传统的生活方式和生产加工方式,欧美等发达国家非常重视该技术,并且积极推广。从3D计算机辅助设计(3D CAD)开始,人们希望能够将设计结果直接转化为实物。3D打印技术将以其革命性的"制造灵活性"和"大幅节省原材料"在加工制造领域掀起一场革命。它适合于小批量,多品种、结构复杂,原材料价值高的机械加工制造,因此在航空制造领域,它将会得到更加广泛的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号