首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
基于PCA和LS-SVM的软测量建模与应用   总被引:4,自引:0,他引:4  
针对工业过程中某些重要过程变量难以实现实时在线检测和高维数据处理的问题,提出了将主元分析与最小二乘支持向量机相结合的软测量建模方法,并利用该方法建立了工业阿维菌素发酵过程中的菌丝浓度软测量模型.主元分析方法的引入,有效地提高了最小二乘支持向量机软测量模型的精度和泛化能力.应用结果表明,该方法与基于径向基函数神经网络软测量模型相比具有有效性和优越性.  相似文献   

2.
煤粉细度是煤粉磨制过程控制的一个关键工艺指标,保证煤粉细度在一定范围内对于优化锅炉或回转窑的燃烧效率有着重要意义。由于煤粉细度无法在线测量,而离线化验既不能保证实时性,又容易造成煤粉泄漏污染环境,因此难以实现对煤粉细度的有效控制。该文通过对制粉过程中影响煤粉细度的因素进行分析,采用基于最小二乘-支持向量机的方法建立煤粉细度的软测量模型。通过模型误差最小的原则,确定了模型相关参数,解决了样本数量较少,常规软测量方法难以实现的问题。通过现场采集的样本数据进行的实验研究表明了该模型的有效性。  相似文献   

3.
基于混合PLS-SVM方法的双酚A软测量建模   总被引:1,自引:1,他引:1  
在对复杂生产过程的软测量建模中,为了有效地处理其生产过程的非线性、多输入和数据相关性等复杂特性,提高模型的推广能力和精度,提出了一种兼备偏最小二乘和支持向量机优点的混合偏最小二乘-支持向量机方法.在对双酚A结晶塔工艺分析的基础上,将该方法应用于双酚A结晶塔软测量建模.应用结果表明,该方法在模型精度、推广能力等方面都明显优于一些传统软测量建模方法.  相似文献   

4.
采用最小二乘支持向量机的方法,利用现场测量的数据,建立水泥粒度软测量模型;通过交叉验证方法优化参数,并用仿真实验验证了该方法的有效性,解决了非线性、小样本、高维数等常规测量方法难以实现的问题,实现了水泥粒度的在线测量。  相似文献   

5.
为提高振动切削过程工件加工精度,利用最小二乘支持向量机建立振动切削力软测量模型;利用数控车床振动切削实验系统所采集数据作为最小二乘支持向量机的输入参数,振动切削力作为输出参数进行仿真分析。研究结果表明:该振动切削力软测量模型具有较高的建模精度和较强的泛化能力;对振动切削力进行软测量后,加工工件表面粗糙度平均误差可降低50%以上,圆度平均误差可降低70%以上。  相似文献   

6.
基于支持向量机的生物发酵过程软测量建模   总被引:6,自引:1,他引:6  
针对最小二乘向量机的缺陷,提出了一种改进的最小二乘支持向量机回归方法.根据输入变量和样本点间欧氏距离的大小,去除回归模型中大部分的样本点,从而获得回归模型的“稀疏”特性,大大提高计算速度.同时,将这一方法应用于生物发酵过程,建立了青霉素发酵过程中产物浓度的软测量模型,实现了青霉素浓度的在线预估.仿真结果表明,这一方法为生物发酵过程中难于在线测量质量参数的实时监测提供了一个有效的手段.  相似文献   

7.
飞灰含碳量运行人员判断锅炉运行好坏和降低煤耗的一项重要指标,是指导评价锅炉燃烧优劣的依据。精确和实时地监测飞灰含碳量有利于提高锅炉燃烧控制水平,降低发电成本,提高机组运行的经济性,本论文在参阅了大量文献后,对课题的研究现状进行了分析和比较,设计了一种基于混合建模的方法构建飞灰含碳量的软测量模型。  相似文献   

8.
针对目前赖氨酸生产过程中发酵产物品质参量难以实时测量,现有软测量模型精度不高、鲁棒性差的问题,提出了一种基于ISCA-LSSVR的赖氨酸发酵过程多模型软测量方法.首先,利用改进的满意聚类算法(ISCA)将样本数据集划分为c个子集;其次,利用最小二乘支持向量回归机(LSSVR)对每个子集分别构建子模型;随后,利用粒子群优化算法和退火算法协同优化模型参数;然后,加权融合各子模型输出得到最终系统输出;最终,设计了由上位机数据处理模块和下位机数据采集模块共同组成的赖氨酸发酵过程关键变量的智能实时监控系统.试验仿真结果表明,相较于传统单一LSSVR预测模型,ISCA-LSSVR模型对产物、基质、菌体质量浓度的预测精度分别提高了5.01%、3.62%和6.78%,模型泛化能力得到了较大提高.  相似文献   

9.
基于支持向量机的软测量建模方法的应用   总被引:1,自引:0,他引:1  
利用基于最小二乘支持向量机(LS-SVM)的软测量建模方法,通过工业现场数据来对丁二烯精馏装置建立软测量模型.对于该软测量模型,支持向量机方法比BP神经网络方法具有更好的泛化能力.研究结果表明,基于最小二乘的支持向量机建模方法是一种有效的软测量建模方法.  相似文献   

10.
发酵过程中生物量浓度的在线估计   总被引:5,自引:1,他引:5  
在发酵过程中,像生物量浓度等变量都是进行实验室的离线采样分析,这往往由于存在较大的时间延迟而不能及时地进行过程控制,达不到指导生产的目的.而软测量技术为该问题提出了一个很好的解决办法.基于神经网络与最小二乘支持向量机分别建立了生物量浓度的在线检测软测量模型.模型分为两类:黑箱模型与混合模型.模型的训练与验证数据都是取自真实的实验过程诺西肽发酵.结果表明软测量方法对生物量浓度具有很好的预估性能,而且加入先验知识的混合模型精度更高.  相似文献   

11.
税务稽查选案是税务机关在税收征管和稽查中面临的一个重要问题。提出了一种基于支持向量机(SVM)与自组织特征映射(SOM)神经网络相结合的稽查选案方法。首先基于支持向量机(SVM)对纳税人进行分类,然后采用自组织映射神经网络(SOM)对疑点信息进行聚类,选出需要重点进行稽查的目标对象。通过对实例的具体测试,表明模型的有效性。  相似文献   

12.
智能交通系统是目前世界上公认的解决城市交通拥堵问题的最佳措施,而实时准确地交通流量预测则是实现智能交通系统和智能交通诱导控制的重要依据.针对城市交通智能运输系统和交通流的特性,在多元线性回归、支持向量机和改进的BP神经网络等三种预测模型的基础上,提出了基于最小二乘支持向量机方法的交通流组合预测模型.实验预测结果表明该组合预测模型具有较高的预测精度,为交通流量提供了一个更好的预测模型.  相似文献   

13.
为解决工业过程控制领域中非线性系统的模型辨识与预测控制问题,提出一种基于BP神经网络模型的预测控制策略,采用一种分段最小二乘支持向量机辨识Hammerstein-Wiener模型系数的方法建立非线性预测控制器.利用BP神经网络训练预测控制输入序列和拟牛顿算法求解非线性预测控制律,从而实现了一种基于支持向量机Hammerstein-Wiener辨识模型的非线性预测控制算法.仿真实验验证了该算法的有效性和可行性.  相似文献   

14.
针对高炉炼铁过程的关键工艺指标———铁水硅含量[ Si]难以直接在线检测且化验过程滞后的问题,提出一种基于稀疏化鲁棒最小二乘支持向量机( R-S-LS-SVR)与多目标遗传参数优化的铁水[ Si]动态软测量建模方法。首先,针对标准最小二乘支持向量机( LS-SVR)的拉格朗日乘子与误差项成正比导致最终解缺少稀疏性的问题,提取样本数据在特征空间映射集的极大无关组来实现训练样本集的稀疏化,降低建模的计算复杂度;其次,标准最小二乘支持向量机的目标函数鲁棒性不足的问题将IGGIII加权函数引入稀疏化后的最小二乘支持向量机模型进行鲁棒性改进,得到鲁棒性较强的稀疏化鲁棒最小二乘支持向量机模型;最后,针对常规均方根误差评价模型性能的不足,提出从建模误差与估计趋势评价建模性能的多目标评价指标。在此基础上,利用非支配排序的带有精英策略的多目标遗传算法优化模型参数,从而获得具有最优参数的铁水[ Si]在线软测量模型。工业实验及比较分析验证了所提方法的有效性和先进性。  相似文献   

15.
PSO-LSSVM分类模型在岩性识别中的应用   总被引:1,自引:0,他引:1  
为了精确解决测井岩性识别问题,提出了一种将粒子群优化算法(PSO)与最小二乘支持向量机(LSSVM)相结合对实际测井资料进行岩性识别的方法.首先使用粒子群优化算法对LSSVM建模过程中的重要参数进行优化调整,然后利用参数优化调整后得到的具有较优分类效果的PSO-LSSVM模型对某油田的测井资料进行岩性识别.实验结果表明:同基于交叉验证的支持向量机模型以及单隐层的BP神经网络模型相比,该方法能够很好描述测井数据和岩性类别之间的非线性映射关系,识别精度高,并提高了算法的自动化程度.  相似文献   

16.
针对某一工业共沸精馏塔成分估计问题,利用基于支持向量机技术的软测量建模方法,建立了恰当的工业软测量模型。利用滑动时间窗技术实时更新建模数据集,并根据预估精度决策在线优化和模型更新,提高工业软测量模型的在线估计精度。研究结果表明,基于滑动时间窗的LS—SVM软测量建模方法,是一种有效的软测量建模方法。  相似文献   

17.
结合GPS测量和水准测量资料,利用支持向量机(SVM)方法对GPS高程进行了转换,并与神经网络和多项式拟合等拟合的结果进行了比较,得出了一些有益的结论.  相似文献   

18.
最小二乘支持向量机在汽车动态系统辨识中的应用   总被引:13,自引:0,他引:13  
汽车转向时动态系统参考模型对于汽车稳定性的控制有重要影响.基于最小二乘支持向量机算法,应用网络搜索和交叉验证的方法选择支持向量机参数,并将其应用于汽车转向时的非线性动态系统辨识,取得了良好的辨识效果,建立的参考模型能够较充分地描述汽车动力学行为。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号