共查询到16条相似文献,搜索用时 91 毫秒
1.
针对闪烁噪声下非线性非高斯系统的目标跟踪问题,首先建立了闪烁噪声的数学模型;然后分析了传统粒子滤波算法的优劣点,在此基础上,引入容积卡尔曼滤波算法,重新设计粒子滤波的重要性密度函数,提出用容积粒子滤波算法来跟踪目标。最后进行了仿真分析与对比。仿真结果表明,闪烁噪声条件下,容积粒子滤波算法的跟踪误差分别是传统粒子滤波算法和无迹粒子滤波算法的1/5和1/2,有更高的跟踪精度;而运行时间仅是无迹粒子滤波算法的1/2,且跟踪稳定性更好。 相似文献
2.
针对平方根容积卡尔曼滤波(SRCKF)在机动目标跟踪中面临测量异常和模型失准时估计精度下降的问题,提出了一种基于反馈判决的鲁棒自适应算法.利用Huber函数对观测残差序列处理获得权重向量以修正测量协方差,增强算法的抗差能力以克服测量异常问题;同时,引入多重渐消因子调整预测误差协方差,从而改变滤波增益,增强算法的自适应性... 相似文献
3.
为了解决非线性滤波中量测噪声呈厚尾分布且统计特性不确定的问题,提出一种基于Pearson Type VII分布的自适应滤波算法.针对传统鲁棒卡尔曼滤波器因尺度矩阵和自由度参数固定不变而无法自适应调整的问题,以容积卡尔曼滤波器为基础,选择Pearson Type VII分布对厚尾噪声进行建模,将传统鲁棒滤波固定自由度参数的估计转化为Pearson Type VII分布中可自适应调整的双自由度参数的估计,并通过inverse Wishart和Gamma分布描述尺度矩阵、双自由度参数和辅助参数的先验分布,利用遗忘因子对各参数进行时间更新;基于变分贝叶斯理论,对系统状态、尺度矩阵、双自由度参数和辅助参数形成的联合后验概率密度函数进行变分迭代,实现对系统状态和未知厚尾噪声的联合估计.仿真结果表明,在不确定厚尾噪声条件下,本文算法的滤波精度高于传统鲁棒容积卡尔曼滤波. 相似文献
4.
目前已有的目标跟踪融合估计算法都是基于Kalman滤波的,而卡尔曼滤波估计算法要求系统过程噪声和量测噪声均为白色噪声,而实际的跟踪系统中量测噪声往往是有色噪声。针对上述问题,本文利用线性组合当前量测与下一时刻量测的量测扩增法,研究了有色量测噪声情况下的集中式、分布式多传感器目标跟踪融合算法。并对新的融合算法进行仿真分析,仿真结果表明新的融合算法具有良好的跟踪性能。 相似文献
5.
考虑了具有不确定二阶统计特性噪声的连续时间Markov跳跃线性系统的确保控制性能鲁棒跟踪问题.该不确定性允许参考模型与跟踪系统的过程与测量噪声的谱密度矩阵能在给定的类型中任意变化.给出了基于确保跟踪控制性能的不确定噪声协方差矩阵的扰动上界以及极小极大鲁棒跟踪控制器的设计方法.采用这种跟踪控制器不仅能极小化不确定时的最坏性能,而且能确保跟踪控制性能指标达到给定的自由度.最后给出了算例来说明所用设计方法的性能. 相似文献
6.
7.
《西安石油大学学报(自然科学版)》2015,(5)
提出了一种鲁棒的基于均值漂移的自适应卡尔曼滤波目标跟踪算法。首先建立卡尔曼滤波的系统模型,用卡尔曼滤波预测目标在当前帧的位置,并将该预测值作为初始值,用均值漂移算法搜索目标位置。然后将搜索结果作为观测值来修正预测值,并根据目标模型与由均值漂移算法搜索得到的候选目标模型及相应背景模型的Bhattacharyya系数自适应调整卡尔曼滤波的参数,从而提出了一种鲁棒的自适应卡尔曼滤波目标跟踪算法。仿真实验表明,该算法具有较好的跟踪精度,对遮挡具有较强的鲁棒性。 相似文献
8.
一种新型机动目标跟踪算法——VDQ算法 总被引:1,自引:0,他引:1
目的 研究机动目标跟踪算法。方法 利用广义似然比技术对机动目标进行检测,既确保检测的可靠性,又满足系统实时性的要求。采用变维和估计系统状态相结合的方法,对机动目标进行跟踪,当目标机动较弱时,对系统状态用噪声方差进行估计,避免由于变维法带来的暂态误差。当目标机动较强时,则采用变维法。结果与结论 计算机仿真结果表明,这种新型机动目标跟踪算法具有良好的跟踪性能。 相似文献
9.
针对传统的基于压缩感知技术的目标跟踪算法存在的跟踪漂移问题,提出了一种采用改进压缩感知算法和卡尔曼滤波方法相结合的车辆目标跟踪算法. 首先,通过传统压缩感知目标跟踪算法识别出本帧目标存在概率最大的区域得到观测值; 其次,利用卡尔曼滤波预测本帧的跟踪轨迹得到预测值,通过卡尔曼滤波增益系数对预测值与观测值进行修正,获得最终目标跟踪结果; 最后,在修正后的目标区域周围进行正负样本采样以实现朴素贝叶斯分类器更新,进而实现目标跟踪轨迹的实时更新. 通过实验室试验以及野外实测验证了所提方法的可行性,相较于基于压缩感知技术的目标跟踪算法,本文所提方法的跟踪结果平均误差分别降低了48%和89%,跟踪轨迹更加趋近车辆真实运动轨迹. 相似文献
10.
非高斯条件下基于粒子滤波的目标跟踪 总被引:22,自引:1,他引:22
介绍了粒子滤波的基本思想和具体算法实现步骤,在给出的闪烁噪声统计模型基础上,将粒子滤波算法应用在雷达目标跟踪中,解决了闪烁噪声情况下的雷达目标跟踪问题.仿真结果表明,在满足高斯噪声条件下,扩展卡尔曼算法和粒子滤波算法跟踪性能相近,但若考虑雷达的闪烁噪声,则随着闪烁影响增强,扩展卡尔曼算法跟踪性能严重下降,而粒子滤波算法能继续保持较好的跟踪精度. 相似文献
11.
用于弹道目标跟踪的有限差分扩展卡尔曼滤波算法 总被引:2,自引:0,他引:2
针对目前常用的滤波算法不能同时做到精确和高效跟踪目标的缺点,提出一种有限差分扩展卡尔曼滤波(FDEKF)算法用于再入阶段的弹道目标跟踪.该算法应用有限差分运算得到滤波的验前、验后误差协方差矩阵,避免了非线性函数求导运算,以及Jacobian阵和Hessian阵的计算,降低了计算难度,扩大了应用范围,增强了滤波过程的收敛性.Mome Carlo 数值仿真表明,FDEKF算法与扩展卡尔曼滤波(EKF)算法和无味卡尔曼滤波(UKF)算法相比较,在跟踪精度上比EKF算法提高了约20%,与UKF算法相当,在计算复杂度上比EKF算法稍有增加,但比UKF算法低约39%.这说明FDEKF算法在计算量增加不多的情况下,滤波精度有显著提高. 相似文献
12.
多基地雷达系统中基于距离差测量的目标跟踪分析 总被引:3,自引:1,他引:3
分析了用多站雷达系统跟踪近程目标的方法。将速度矢量引入到目标运动模型,从而能更好地描述机动目标。系统量测方程建立在距离差测量的基础上,使跟踪过程与发射机位置无关,因而十分适用于发射机机动的系统布局。仿真结果表明该方法是有效的,具有跟踪速度快、稳态误差小的特点,适用于多瞳雷达系统跟踪近程目标。 相似文献
13.
概括了在目标跟踪中常用的几种滤波算法,从目标模型建立到滤波器的算法原理进行了分析和归纳。这些算法各有特点.在不同的情况下它们的跟踪精度、实时性有很大差异。针对一种典型的目标运动,对其中有代表性的算法进行数据仿真,分析和验证了这几种典型滤波算法各项性能的差别。 相似文献
14.
跟踪机动目标,红外单站有不少缺陷,多站可以提供比单站多的信息。然而,多站存在同步的问题。通过对状态更新过程的分析,发现跟踪可以异步实现。多站采用异步的处理方式极大的灵活了数据的处理,而且可以通过多站组网扩大跟踪范围。为解决系统方程的非线性,采用伪线性观测方程。仿真结果表明本方法可以实现对空中目标的稳定跟踪,且观测站增加可以提高精度。 相似文献
15.
针对目标跟踪迭代无味卡尔曼滤波(IUKF)算法中跟踪精度较差的问题,提出一种基于状态扩展技术的改进迭代无味卡尔曼滤波(IIUKF)算法.新算法首先将观测噪声扩展进状态,构造关于扩展状态的零噪声观测方程,然后在观测迭代过程中将最新的扩展状态后验估计代入更新公式,进行观测迭代更新.相比IUKF算法,IIUKF算法不仅形式上更为简洁,而且避免了IUKF算法中先验估计和观测噪声非统计正交的问题,滤波精度更高.数值仿真表明,IIUKF算法的跟踪误差比IUKF算法减小了20%以上. 相似文献
16.
将卡尔曼(Kalman)滤波器的变维滤波算法应用于雷达数据处理中,对机动目标进行跟踪,得出机动目标的滤波数据曲线,并对目标进行了拦截仿真。仿真结果表明该方法能估计出目标的运动特征并对运动目标拦截成功。 相似文献