首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
S J Gaunt  J R Miller  D J Powell  D Duboule 《Nature》1986,324(6098):662-664
Pattern formation in animal development requires that genes be expressed differentially according to position in the sheets of cells that make up the early embryo. The homoeobox-containing genes of Drosophila are control genes active both in the establishment of a segmentation pattern and in the specification of segment identity. In situ hybridization experiments confirm that these genes are expressed in a segmentally-restricted manner and that their expression presages morphological differentiation of segmental structures. Homoeobox genes have recently been isolated from the mouse and have been shown to be expressed during mouse development. Using in situ hybridization, we show here that expression of the mouse homoeobox gene Mo-10 (ref. 7) is spatially restricted in the developing embryo and that localization of expression is already evident within the germ layers before their morphological differentiation. These findings support the suggestion that the homoeobox genes of mammals, like those of Drosophila, may be important in pattern formation.  相似文献   

2.
3.
D G Wilkinson  S Bhatt  M Cook  E Boncinelli  R Krumlauf 《Nature》1989,341(6241):405-409
The vertebrate hindbrain develops in a segmental pattern, with distinctive groups of neurons originating from different segments. We report here that members of the Hox-2 cluster of murine homoeobox genes are expressed in segment-specific patterns in the developing hindbrain, with successive genes having boundaries at two-segment intervals. These data indicate that Hox genes specify segment phenotype, a role analogous to that of their Drosophila homologues.  相似文献   

4.
Yusa K  Horie K  Kondoh G  Kouno M  Maeda Y  Kinoshita T  Takeda J 《Nature》2004,429(6994):896-899
The chief limitation of phenotype-based genetic screening in mammalian systems is the diploid nature of the genome. Cells deficient in the Bloom's syndrome gene (Blm) show an increased rate of loss of heterozygosity. Here we have used a tetracycline-regulated Blm allele (Blm(tet)) to introduce bi-allelic mutations across the genome in mouse embryonic stem (ES) cells. Transient loss of Blm expression induces homologous recombination not only between sister chromatids but also between homologous chromosomes. We considered that the phenotype of ES cells bearing bi-allelic mutations would be maintained after withdrawal of the tetracycline analogue doxycycline. Indeed, a combination of N-ethyl-N-nitrosourea mutagenesis and transient loss of Blm expression enabled us to generate an ES cell library with genome-wide bi-allelic mutations. The library was evaluated by screening for mutants of glycosylphosphatidylinositol-anchor biosynthesis, which involves at least 23 genes distributed throughout the genome. Mutants derived from 12 different genes were obtained and two unknown mutants were simultaneously isolated. Our results indicate that phenotype-based genetic screening with Blm(tet) is very efficient and raises possibilities for identifying gene functions in ES cells.  相似文献   

5.
H te Riele  E R Maandag  A Clarke  M Hooper  A Berns 《Nature》1990,348(6302):649-651
Specific genes can be inactivated or mutated in the mouse germ line. The phenotypic consequences of the mutation can provide pivotal information on the function of the gene in development and maintenance of the mammalian organism. The procedure entails homologous recombination in embryonic stem cells, which, on fusion to recipient blastocysts, give rise to chimaeric mice that can transmit the mutant gene to their offspring. Inbreeding can then yield mice carrying the mutation in both alleles allowing the phenotypic analysis of recessive mutations. In addition to mice lacking a particular gene function, cell lines carrying null alleles of normally expressed genes can be instrumental in assessing the function of the gene. These cell lines can either be obtained from homozygous animals or, should the mutation be lethal early in embryonic development, be generated by consecutive inactivation of both alleles by homologous recombination in cultured cells. Here we illustrate the feasibility of this latter approach by the efficient consecutive inactivation of both alleles of the pim-1 proto-oncogene in embryonic stem cells.  相似文献   

6.
7.
A Awgulewitsch  D Jacobs 《Nature》1992,358(6384):341-344
The striking similarities in the structure, organization and anterior-posterior expression patterns between the murine Hox gene system and the Drosophila homeotic gene complexes, called HOM-C (ref. 3), may point to highly conserved mechanisms for specifying positional identities (reviewed in ref. 4). Strong support for this concept lies in the observation of conserved colinearity between the genomic order of the Hox/HOM genes and their unique successive expression domains along the anterior-posterior axes of both mouse and fly embryos. These unique and precise expression patterns appear to be facilitated by multiple cis-regulatory elements (reviewed in ref. 5). One of the few elements characterized in detail is the autoregulatory enhancer of the homeotic gene Deformed (Dfd), which supports expression in subregions of posterior head segments of Drosophila embryos. Here we present evidence that this enhancer is capable of conferring reporter gene expression to a discrete subregion of the hindbrain in transgenic mouse embryos. Remarkably, this anterior-posterior subregion lies within the common anterior expression domain of the Dfd cognate Hox genes in the postotic hindbrain. Our results indicate that the Dfd autoregulatory enhancer is part of a highly conserved mechanism for establishing region-specific gene expression along the anterior-posterior axis of the embryo.  相似文献   

8.
Gebelein B  McKay DJ  Mann RS 《Nature》2004,431(7009):653-659
During Drosophila embryogenesis, segments, each with an anterior and posterior compartment, are generated by the segmentation genes while the Hox genes provide each segment with a unique identity. These two processes have been thought to occur independently. Here we show that abdominal Hox proteins work directly with two different segmentation proteins, Sloppy paired and Engrailed, to repress the Hox target gene Distalless in anterior and posterior compartments, respectively. These results suggest that segmentation proteins can function as Hox cofactors and reveal a previously unanticipated use of compartments for gene regulation by Hox proteins. Our results suggest that these two classes of proteins may collaborate to directly control gene expression at many downstream target genes.  相似文献   

9.
10.
The comparison of Hox genes between vertebrates and their closest invertebrate relatives (amphioxus and ascidia) highlights two derived features of Hox genes in vertebrates: duplication of the Hox gene cluster, and an elaboration of Hox expression patterns and roles compared with non-vertebrate chordates. We have investigated how new expression domains and their associated developmental functions evolved, by testing the cis-regulatory activity of genomic DNA fragments from the cephalochordate amphioxus Hox cluster in transgenic mouse and chick embryos. Here we present evidence for the conservation of cis-regulatory mechanisms controlling gene expression in the neural tube for half a billion years of evolution, including a dependence on retinoic acid signalling. We also identify amphioxus Hox gene regulatory elements that drive spatially localized expression in vertebrate neural crest cells, in derivatives of neurogenic placodes and in branchial arches, despite the fact that cephalochordates lack both neural crest and neurogenic placodes. This implies an elaboration of cis-regulatory elements in the Hox gene cluster of vertebrate ancestors during the evolution of craniofacial patterning.  相似文献   

11.
12.
Alpha-inhibin is a tumour-suppressor gene with gonadal specificity in mice.   总被引:27,自引:0,他引:27  
M M Matzuk  M J Finegold  J G Su  A J Hsueh  A Bradley 《Nature》1992,360(6402):313-319
The inhibins are alpha:beta heterodimeric growth factors that are members of the transforming growth factor-beta family. To understand the physiological roles of the inhibins in mammalian development and reproduction, a targeted deletion of the alpha-inhibin gene was generated by homologous recombination in mouse embryonic stem cells. Mice homozygous for the null allele (inhibin-deficient) initially develop normally but every mouse ultimately develops mixed or incompletely differentiated gonadal stromal tumours either unilaterally or bilaterally. Inhibin is thus a critical negative regulator of gonadal stromal cell proliferation and the first secreted protein identified to have tumour-suppressor activity.  相似文献   

13.
Transforming growth factor-beta 1 (TGF-beta 1) is a multifunctional growth factor that has profound regulatory effects on many developmental and physiological processes. Disruption of the TGF-beta 1 gene by homologous recombination in murine embryonic stem cells enables mice to be generated that carry the disrupted allele. Animals homozygous for the mutated TGF-beta 1 allele show no gross developmental abnormalities, but about 20 days after birth they succumb to a wasting syndrome accompanied by a multifocal, mixed inflammatory cell response and tissue necrosis, leading to organ failure and death. TGF-beta 1-deficient mice may be valuable models for human immune and inflammatory disorders, including autoimmune diseases, transplant rejection and graft versus host reactions.  相似文献   

14.
15.
人多肿瘤抑制因子(MTS1)是一个抑瘤基因,在许多原发性肿瘤及细胞系中都发现了它的突变,有潜在应用价值。由于腺病毒独特的性质,它介导的肿瘤基因置换疗法,受到了愈来愈多的应用与关注。人癌胚抗原启动子能指导组织特异性表达。将癌胚抗原启动子置于MTS1基因上游,并在下游加poly A化信号,通过穿梭质粒pΔE1SP1A在人胚肾细胞HEK 293中与腺病毒载体pBHG11进行同源重组,插入腺病毒E1区。获得的重组病毒粒子作用于人乳腺癌细胞系MCF7,初步表明重组腺病毒能抑制MCF7的生长。  相似文献   

16.
Johnson L  Mercer K  Greenbaum D  Bronson RT  Crowley D  Tuveson DA  Jacks T 《Nature》2001,410(6832):1111-1116
About 30% of human tumours carry ras gene mutations. Of the three genes in this family (composed of K-ras, N-ras and H-ras), K-ras is the most frequently mutated member in human tumours, including adenocarcinomas of the pancreas ( approximately 70-90% incidence), colon ( approximately 50%) and lung ( approximately 25-50%). To construct mouse tumour models involving K-ras, we used a new gene targeting procedure to create mouse strains carrying oncogenic alleles of K-ras that can be activated only on a spontaneous recombination event in the whole animal. Here we show that mice carrying these mutations were highly predisposed to a range of tumour types, predominantly early onset lung cancer. This model was further characterized by examining the effects of germline mutations in the tumour suppressor gene p53, which is known to be mutated along with K-ras in human tumours. This approach has several advantages over traditional transgenic strategies, including that it more closely recapitulates spontaneous oncogene activation as seen in human cancers.  相似文献   

17.
Effects of an Rb mutation in the mouse.   总被引:126,自引:0,他引:126  
The retinoblastoma gene is mutated in several types of human cancer and is the best characterized of the tumour-suppressor genes. A mouse strain has been constructed in which one allele of Rb is disrupted. These heterozygous animals are not predisposed to retinoblastoma, but some display pituitary tumours arising from cells in which the wild-type Rb allele is absent. Embryos homozygous for the mutation die between days 14 and 15 of gestation, exhibiting neuronal cell death and defective erythropoiesis.  相似文献   

18.
A L Joyner  W C Skarnes  J Rossant 《Nature》1989,338(6211):153-156
A full understanding of the function of genes that control developmental events can be obtained only by a combination of molecular and mutational analysis. One putative developmental gene is the mouse engrailed-like gene En-2, which was isolated by virtue of its extensive homology to Drosophila engrailed, which contributes to the control of segmentation in the developing insect. Our hybridization analysis in situ has revealed that expression of En-2 is restricted to a specific domain of the developing central nervous system from 8 days of development on, indicating a role for the gene in establishing spatial domains in the brain. Unfortunately no En-2 mutations are available to elucidate further its function in development. To this end, we report here the isolation of three pluripotent embryonic stem cell lines in which one copy of the homoeobox-containing gene, En-2, has been altered by homologous recombination.  相似文献   

19.
T Lufkin  M Mark  C P Hart  P Dollé  M LeMeur  P Chambon 《Nature》1992,359(6398):835-841
Murine Hox genes have been postulated to play a role in patterning of the embryonic body plan. Gene disruption studies have suggested that for a given Hox complex, patterning of cell identity along the antero-posterior axis is directed by the more 'posterior' (having a more posterior rostral boundary of expression) Hox proteins expressed in a given cell. This supports the 'posterior prevalence' model, which also predicts that ectopic expression of a given Hox gene would result in altered structure only in regions anterior to its normal domain of expression. To test this model further, we have expressed the Hox-4.2 gene more rostrally than its normal mesoderm anterior boundary of expression, which is at the level of the first cervical somites. This ectopic expression results in a homeotic transformation of the occipital bones towards a more posterior phenotype into structures that resemble cervical vertebrae, whereas it has no effect in regions that normally express Hox-4.2. These results are similar to the homeotic posteriorization phenomenon generated in Drosophila by ectopic expression of genes of the homeotic complex HOM-C (refs 7-10; reviewed in ref. 3).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号