首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 815 毫秒
1.
根据地震分布密度、控制地震发生的构造的差异,将贵州地震平面分布划分为威宁—晴隆区(A区)、遵义—贵阳区(B区)和铜仁—榕江区(C区)3个区;A区和B区以垭都—紫云断层为界,B区和C区以松桃—独山断层为界;A区、B区和C区的地震分布分别为80%、15%和5%。贵州地震震源深度显示都属于浅源地震,总体主要集中在7~11km;B区分布在30km以浅深度内;A区主要在20km以浅深度内,在20~70km也有地震发生。1900年~1975年,4级以上地震活跃期为1906~1919,1928~1941,1948~1955,1963~1974;1975~2011年,3级以上地震活跃期为1978~1989,1993~2000,2003~2011。  相似文献   

2.
基于中国地震局地质研究所在中国四川西部布设的流动地震观测台阵数据,用近年发展起来的虚拟地表震源反射测深方法研究川滇地区的地壳结构。结果表明,川滇地块、松潘-甘孜地块和杨子地块3个地块虚拟地表震源反射测深的莫霍面深度存在明显差异:1)四川盆地为40 km左右;2)川滇地块为45~50 km;3)松潘-甘孜地块为30~40 km。四川盆地虚拟地表震源反射测深的莫霍面深度与艾里重力均衡模型所预测的结果基本上一致,而川滇地块和松潘-甘孜地块虚拟地表震源反射测深的莫霍面深度明显小于前人得到的接收函数莫霍面深度和艾里重力均衡模型预测的结果。可能与四川盆地地壳结构简单,而川滇地块及松潘-甘孜地块地壳结构复杂有关。同时,结果显示,在鲜水河断裂和安宁河断裂处虚拟地表震源反射测深的莫霍面深度明显变浅,可能与这些深大断裂处地幔物质的上涌有关。研究结果可为认识青藏高原东南缘的构造变形模式提供新的约束。  相似文献   

3.
A portable 3-component broadband digital seismic array was deployed across the Tianshan orogenic belt (TOB) to investigate the lithospheric structure. Based on receiver function analysis of the teleseismic P-wave data, a 2-D S-wave velocity profile of the boundary area of the TOB and the Tarim Basin was obtained at the depths of 0--80 km.Our results reveal a vertical and lateral inhomogeneity in the crust and uppermost mantle. Four velocity interfaces divide the crystalline crust into the upper, middle and lower crust. A low velocity zone is widely observed in the upper-middle crust. The depth of Moho varies between 42 and 52 km. At the north end of the profile the Moho dips northward with a vertical offset of 4--6 km, which implies a subduction front of the Tarim Basin into the TOB. The Moho generally appears as a velocity transitional zone except beneath two stations in the northern Tarim Basin, where the Moho is characterized by a typical velocity discontinuity. The fine velocity structure and the deep contact deformation of the crust and upper most mantle delineate the north-south lithospheric shortening and thickening in the boundary area of the TOB and the Tarim Basin, which would be helpful to constructing the geodynamical model of the intracontinental mountain-basin-coupling system.  相似文献   

4.
Based on the multiple-epoch Global Positioning System observations during a period from 1992 to 1999, we document directly a rapid crustal shortening of ~20 mm/a across the western Tianshan Mts. (76°E), in contrast to a 4 mm/a convergent rate across the eastern Tianshan Mts. (87°E)and the north-south convergence across the mountain belt descends laterally from west to east. The direction of current crustal movement inferred by GPS sites along the southern flank of the Tianshan Mts. is approximately perpendicular to the easterly-trending mountain belt, indicating that the Tarim Basin thrust almost rightly into the Tianshan Mts. The Tarim Basin accommodates nearly no or a minor, if any, crustal deformation and rotates clockwise, as a rigid body in a whole, at a rate of 0.64°/Ma around a Euler pole at 95.7°E, 40.3°N (Anxi, Gansu) with respect to the stable Siberia. The relative motion between the Kazakh platform and the Dzungarian Basin is quite apparent. The Dzungar should be regarded as an independent active block from the view of the Asia tectonic settings.  相似文献   

5.
Deep structure at northern margin of Tarim Basin   总被引:5,自引:0,他引:5  
Zhao  JunMeng  Cheng  HongGang  Pei  ShunPing  Liu  HongBing  Zhang  JianShi  Liu  BaoFeng 《科学通报(英文版)》2008,53(10):1544-1554
In this paper, a 2D velocity structure of the crust and the upper mantle of the northern margin of the Tarim Basin (TB) has been obtained by ray tracing and theoretical seismogram calculation under the condition of 2D lateral inhomogeneous medium using the data of seismic wide angle reflection/refraction profile from Baicheng to Da Qaidam crossing the Kuqa Depression (KD) and Tabei Uplift (TU). And along the Baicheng to Da Qaidam profile, 4 of the 10 shot points are located in the northern margin of the TB. The results show that the character of the crust is uniform on the whole between the KD and TU, but the depth of the layers, thickness of the crust and the velocity obviously vary along the profile. Thereinto, the variation of the crust thickness mainly occurs in the middle and lower crust. The Moho has an uplifting trend near the Baicheng shot point in KD and Luntai shot point in TU, and the thickness of the crust reduces to 42 km and 47 km in these two areas, respectively. The transition zone between the KD and TU has a thickest crust, up to 52 km. In this transition zone, there are high velocity anoma- lies in the upper crust, and low velocity anomalies in the lower crust, these velocity anomalies zone is near vertical, and the sediment above them is thicker than the other areas. According to the velocity distributions, the profile can be divided into three sections: KD, TU and transition zone between them. Each section has a special velocity structural feature, the form of the crystalline basement and the relationship between the deep structure and the shallow one. The differences of velocity and tectonic between eastern and western profile in the northern margin of the Tarim Basin (NMTB) may suggest different speed and intensity of the subduction from the Tarim basin to the Tianshan orogenic belt (TOB).  相似文献   

6.
A detailed 3-D P-wave velocity model of the crust and uppermost mantle under the capitol region is determined with a spatial resolution of 25 km in the horizontal direction and 4-17 km in depth. We used 48750 precise P-wave arrival time data from 2973 events of local crustal earthquakes, controlled seismic explosions and quarry blasts. These events were recorded by 123 seismic stations. The data are analyzed by using a 3-D seismic tomography method. Our tomographic model provides new information on the geological structure and complex seismotectonics of this region. Different patterns of velocity structures show up in the North China Basin, the Taihangshan and the Yanshan Mountainous areas. The velocity images of the upper crust reflect well the surface geological, topographic and lithological features. In the North China Basin, the depression and uplift areas are imaged as slow and fast velocity belts, respectively, which are oriented in NE-SW direction. The trend of velocity anomalies is the same as that of major structure and tectonics. Paleozoic strata and Pre-Cambrian basement rocks outcrop widely in the Taihangshan and Yanshan uplift areas, which exhibit strong and broad high-velocity anomalies in our tomographic images, while the Quaternary intermountain basins show up as small low-velocity anomalies. Most of large earthquakes, such as the 1976 Tangshan earthquake (M 7.8) and the 1679 Sanhe earthquake (M 8.0), generally occurred in high-velocity areas in the upper to middle crust. However, in the lower crust to the uppermost mantle under the source zones of the large earthquakes, low-velocity and high-conductivity anomalies exist, which are considered to be associated with fluids, just like the 1995 Kobe earthquake (M 7.2) and the 2001 Indian Bhuj earthquake (M 7.8). The fluids in the lower crust may cause the weakening of the seismogenic layer in the upper and middle crust and thus contribute to the initiation of the large crustal earthquakes.  相似文献   

7.
火山岩型油气藏是准噶尔盆地十分重要的油气藏类型,近年来针对该类型油气藏的勘探在准东地区呈现出多点开花的场面。为了加快推进准东地区石炭系火山岩油气藏的勘探,本文通过高精度航磁、区域重力、地震和钻井资料对准噶尔盆地东部的断裂系统进行推断与解释,重点对该区磁性体的埋深开展分析。基于航磁计算的磁性体深度显示,准噶尔盆地东部隆起区磁性体最小埋深在0.5-2.2 km之间,清晰地呈现出南北分带,东西分块的构造格局。以隆起区中部一条近南北向深大断裂为界,东部和西部磁性体的深度、规模和形态存在明显差异。受次级断裂的影响,东部磁性体呈北东向展布,西部磁性体呈北西向和近东西向展布。依据断裂系统和磁性体埋藏深度对火山岩体油气成藏的控制,结合石炭系烃源岩生烃强度的展布,在准东地区预测出三个有利的火山岩油气藏勘探区带。  相似文献   

8.
大部分的地震发生在比较浅的位置,但是部分地震的深度可以达到600 km以上.目前已有的破裂机制预测地震只存在于上地幔中,但是一些地震的初步定位深度却可以超过670 km(1998年2月9号Okhotsk海地震,地震目录中被定为678 km).研究表明大多数浅震是由于断层失稳,沿着已有的断层面突然滑动引发的,而深震的发震机制目前尚无定论,尤其是下地幔中是否发生地震对于研究深震机制可以提供重要的约束.因为地球中的横向不均匀性,地震的绝对深度有较大的误差,所以我们根据观测地震图中明显的三重值特征,对上述那次深地震进行波形模拟,把相对深度和绝对深度结合起来,最终确定地震实际发生在670公里间断面以上,因此我们认为目前目录中那些最深的地震仍然发生在上地幔中.  相似文献   

9.
We constrain SH wave velocity structure for the upper mantle beneath western Qiangtang Terrane by comparing regional distance seismic triplicated waveforms with synthetic seismograms, based on an intermediate event (-220 km) recorded by the INDEPTH-Ⅲ seismic array. The ATIP model reveals a low-velocity anomaly with up to -4% variation at the depth of 190-270 km and a relatively small velocity gradient above the depth of 410 km in the upper mantle, which is in agreement with previous results. In combination with other geological studies, we suggest that the depth of top asthenosphere is 190 km and no large-scale lithosphere thinning occurs in western Qiangtang Terrane, besides, Qiangtang Terrane has the same kind of upper mantle structure as the stable Eurasia.  相似文献   

10.
On 10 January, 1998 an earthquake of Ms=6.2occurred in the Zhangbei-Shangyi region of North China.The surface seismic deformation was measured in the previous study using the 3 pass ERS-1/2 SAR differential interferometric technology (D-INSAR). In this note the focal mechanism of Zhangbei-Shangyi earthquake is estimated from the D-INSAR measurement of surface deformation based on a standard elastic dislocation model for seismic displacement. The inversion procedure is an iterative, linear least-squares algorithm. Through the relation between the focal parameters and displacement in the line of sight direction measured in the radar interferogram, the optimum focal parameter set is derived. The results show that the seismic fault of Zhangbei-Shangyi earthquake is a thrust fault dipping SW with a large right-lateral displacement component.The strike and dip are 95° and 30° respectively on a fault patch of 12 km long by 14 km wide. Its hypocenter is located at N40°58', E114°21', and 7.5 km in depth. The estimated slip vector is 0.728 m with a rake of 105.95°, the trend of slip is NW13.26°, and M0is 2.69×1018 N @ m.  相似文献   

11.
The mainshock of April 20, 2013 Sichuan Lushan M S7.0 earthquake was relocated using a 3-D velocity model. Double difference algorithm was applied to relocate aftershock sequences of Lushan earthquake. The locations of 2405 aftershocks were determined. The location errors in E-W, N-S and U-D direction were 0.30, 0.29 and 0.59 km on average, respectively. The location of the mainshock is 102.983°E, 30.291°N and the focal depth is 17.6 km. The relocation results show that the aftershocks spread approximately 35 km in length and 16 km in width. The dominant distribution of the focal depth ranges from 10 to 20 km. A few earthquakes occurred in the shallow crust. Focal depth profiles show fault planes dip to the northwest, manifested itself as a listric thrust fault. The dip angle is steep in the shallow crust and gentle in the deep crust. Although the epicenters of aftershocks distributed mainly along both sides of the Shuangshi-Dachuan fault, the seismogenic fault may be a blind thrust fault on the eastern side of the Shuangshi-Dachuan fault. Earthquake relocation results reveal that there is a southeastward tilt aftershock belt intersecting with the seismogenic fault with y-shape. We speculate it is a back thrust fault that often appears in a thrust fault system. Lushan earthquake triggered the seismic activity of the back thrust fault.  相似文献   

12.
Song TR  Helmberger DV  Grand SP 《Nature》2004,427(6974):530-533
The seismic discontinuity at 410 km depth in the Earth's mantle is generally attributed to the phase transition of (Mg,Fe)2SiO4 (refs 1, 2) from the olivine to wadsleyite structure. Variation in the depth of this discontinuity is often taken as a proxy for mantle temperature owing to its response to thermal perturbations. For example, a cold anomaly would elevate the 410-km discontinuity, because of its positive Clapeyron slope, whereas a warm anomaly would depress the discontinuity. But trade-offs between seismic wave-speed heterogeneity and discontinuity topography often inhibit detailed analysis of these discontinuities, and structure often appears very complicated. Here we simultaneously model seismic refracted waves and scattered waves from the 410-km discontinuity in the western United States to constrain structure in the region. We find a low-velocity zone, with a shear-wave velocity drop of 5%, on top of the 410-km discontinuity beneath the northwestern United States, extending from southwestern Oregon to the northern Basin and Range province. This low-velocity zone has a thickness that varies from 20 to 90 km with rapid lateral variations. Its spatial extent coincides with both an anomalous composition of overlying volcanism and seismic 'receiver-function' observations observed above the region. We interpret the low-velocity zone as a compositional anomaly, possibly due to a dense partial-melt layer, which may be linked to prior subduction of the Farallon plate and back-arc extension. The existence of such a layer could be indicative of high water content in the Earth's transition zone.  相似文献   

13.
为了研究山西断陷带的地震活动性及其物理背景, 利用国家地震科学数据共享中心以及山西省地震局提供的地震震相数据, 通过 tomoDD方法对1990—2008年和2012—2016年期间的地震进行重定位, 并反演山西断陷带附近的地震波速度结构。地震集中于山西断陷带内, 基本上位于已知断层附近, 主要分布在太原盆地的东北?西南两侧。震源深度范围为0~30 km, 北部区域震源深度小, 震源深度超过20 km的地震主要分布在忻定盆地以南地区, 太原盆地两侧的地震集中区形成两个延伸深度最大的南北走向的垂直地震密集条带, 推测受太原盆地两侧两个近南北走向的活动的深大断裂控制。太原盆地两侧近南北走向的两个活动深大断裂如果贯通, 有可能发生7级以上强震。同时, 研究结果显示山西断陷带地壳的地震波速结构变化剧烈, 该断陷带下方的地壳普遍表现为低速, 但其中太原盆地下方地壳的波速略高, 其东北侧和西南侧断陷盆地下方的地壳则表现为更低的波速; 与此相反, 其西北侧和东南侧紧邻太原盆地的两个小区域下方的地壳则表现为明显的高速, 大同西部区域下方的地壳也表现为明显的高速。这些波速特征都与地表构造以及地表热流值有很好的对应关系, 太原盆地东北侧和西南侧都可能有热物质上涌, 并且可能侵入西部的鄂尔多斯地块内部; 相反地, 热物质可能没有侵入太原盆地西北侧、太原盆地以及太原盆地东南侧下方的地壳中, 说明太原盆地的拉张裂开可能并不是受热物质上涌控制, 而是受青藏高原的推挤力控制。  相似文献   

14.
Based on the results of pure dispersions of Rayleigh wave tomography in the Qinghai-Tlbet Plateau and its adjacent areas, tsklng S wave velocities from previous linear inversion as the initial model, using the simulated annealing algorithm, a nonlinear simultaneous inversion has been carried out for S wave velocity and thickness of different layers, including the crust, the lithosphere and the asthenosphere. The results indicate: The crustal thickness shows strong correlation with geology structures sketched by the sutures and major faults. The crust is very thick in the Qinghal-Tibet Plateau, varying from 60 km to 80 kin. The Ilthospherlc thickness in the Qinghai-Tibet Plateau Is thinner (130-160 kin) than Its adjacent areas. And two blocks can be recognized, divided by an NNE strike boundary running between 90°E-92°E inside the plateau. Its asthenosphere is relatively thick, varies from 150 km to 230 kin, and the thickest area is located in the western Qiangtsng. India has a thinner crust (32-38 kin), a thicker lithosphere of 190 km and a rather thin asthenosphere of only 60 kin. Sichuan and Tarlm basins have the crust thickness less than 50 kin. Their Iithospheres are thicker than the Qinghai-Tibet Plateau, and their asthenospheres are thinner. A discussion has been made on the character and formation mechanism of the typical crust-mantle transition zone in the western Qiangtsng block.  相似文献   

15.
塔里木盆地哈拉哈塘-哈得地区三叠系作为油气显示富集有利层位之一,目前仅对三叠系进行了盆地级的研究,而区带认识不清,层序内部沉积演化不明,对区块勘探指导针对性不强,急需开展区带化研究。利用覆盖全区的高分辨率三维地震资料和岩心、测井资料的基础之上,运用地震沉积学研究方法分析地震属性结构,识别出面积达18 000 km2的哈拉哈塘-哈得地区克拉玛依组沉积相类型和沉积相平面展布范围,从而较准确的描述出其沉积相演化特征,为后续结合区域构造背景和断层分布来预测岩性油气藏分布提供依据。分析表明:塔里木盆地哈拉哈塘-哈得地区三叠系克拉玛依组整体为湖泊-三角洲沉积体系,上下段差异明显。下段砂体由北东向南西逐渐减少,反映河道影响作用减小,牙哈古隆起斜坡处发育三角洲平原亚相,向南西展布依次发育三角洲前缘亚相和湖泊相。克拉玛依组上段湖盆收缩,广泛发育三角洲平原亚相,向南西-西方向过渡为三角洲前缘亚相和湖泊相。其中,在三角洲平原亚相中发育下切谷沉积体系。  相似文献   

16.
根据现代沉积学和层序地层学理论,以塔里木盆地志留系大量的岩心、测井和地震资料为基础,开展地层划分与沉积演化研究.塔中地区志留系分为下统柯坪塔格组沉积、塔塔埃尔塔格组、经历碎屑岩潮坪(局部发育扇三角洲)—内陆棚(泻湖)沉积演化.研究成果对于塔里木盆地储层展布及储盖组合具有参考价值,便于指导下一步油气勘探.  相似文献   

17.
SHRIMP U-Pb zircon 207 Pb/206 Pb ages were obtained from two drill cores from the basement of the Ordos Basin.A garnet-sillimanite-biotite-plagioclase gneiss(QI1-1) from the western Ordos Basin basement yielded an average age of 2031 10 Ma.Based on the mineral assemblages,the source material of the gneiss is speculated to be pelitic-felsic system.A gneissic two-mica granite(Long1-1) from the eastern Ordos Basin basement yielded an average age of 2035 10 Ma.The zircons from both samples exhibit magmatic growth pattern.The shapes of the zircons suggest that the zircons should crystallize from a granitic of felsic volcanic terrain.The ages and the characters of zircons are consisitent with the other researches in the Ordos Basin and indicate that the basement of the Ordos Basin had experienced an intensive magmatic epsode during the late Paleoproterozoic period.The date from this study suggest the possible existences of a Paleoproterozoic mobile tectonic belt in the region.The reconstruction of such a belt is critical for understanding the tectonomagmatic evolution of the western block of the North China Craton.  相似文献   

18.
Magnetotelluric measurements were carried out along two profiles across the middle and southwestern sections of the Longmenshan fault zone (LMSf) from 2009 to 2011, after the 2008 Wenchuan M W7.9 earthquake. The former profile crosses the Wenchuan event epicenter and the latter one crosses 2013 Lushan M S7.0 event epicenter. The data were analyzed using advanced processing techniques, including phase tensor and two-dimensional inversion methods, in order to obtain reliable 2-D profiles of the electrical structure in the vicinity of the two earthquakes. A comparison of the two profiles indicates both similarities and differences in the deep crustal structure of the LMSf. West of the southwestern section, a crustal high conductivity layer (HCL) is present at about 10 km depth below the Songpan-Garzê block; this is about 10 km shallower than that under the middle section of the LMSf. A high resistivity body (HRB) is observed beneath the southwestern section, extending from the near surface to the top of upper mantle. It has a smaller size than the HRB observed below the middle section. In the middle section, there is a local area of decreased resistivity within the HRB but there is absence of this area. The 2013 Lushan earthquake occurred close to the eastern boundary of HRB and the Shuangshi-Dachuan fault, of which the seismogenic context has both common and different features in comparison with the 2008 Wenchuan event. On a large scale, the 2013 Lushan earthquake is associated with the HCL and deformation in the crust including HCL of the eastern Tibetan Plateau. In order to assess seismic risk, it is important to consider both the stress state and the detailed crustal structure in different parts of the LMSf.  相似文献   

19.
Davis JL  Wernicke BP  Bisnath S  Niemi NA  Elósegui P 《Nature》2006,441(7097):1131-1134
Transient tectonic deformation has long been noted within approximately 100 km of plate boundary fault zones and within active volcanic regions, but it is unknown whether transient motions also occur at larger scales within plates. Relatively localized transients are known to occur as both seismic and episodic aseismic events, and are generally ascribed to motions of magma bodies, aseismic creep on faults, or elastic or viscoelastic effects associated with earthquakes. However, triggering phenomena and systematic patterns of seismic strain release at subcontinental (approximately 1,000 km) scale along diffuse plate boundaries have long suggested that energy transfer occurs at larger scale. Such transfer appears to occur by the interaction of stresses induced by surface wave propagation and magma or groundwater in the crust, or from large-scale stress diffusion within the oceanic mantle in the decades following clusters of great earthquakes. Here we report geodetic evidence for a coherent, subcontinental-scale change in tectonic velocity along a diffuse approximately 1,000-km-wide deformation zone. Our observations are derived from continuous GPS (Global Positioning System) data collected over the past decade across the Basin and Range province, which absorbs approximately 25 per cent of Pacific-North America relative plate motion. The observed changes in site velocity define a sharp boundary near the centre of the province oriented roughly parallel to the north-northwest relative plate motion vector. We show that sites to the west of this boundary slowed relative to sites east of it by approximately 1 mm yr(-1) starting in late 1999.  相似文献   

20.
太原盆地边缘地貌与新构造运动及其意义   总被引:2,自引:0,他引:2  
应用构造地貌的观战把太原盆地及其边缘地貌分为:外围断块抬升山地,抬升轻微的丘陵台地,山前堆积的洪积倾斜平原和沉降堆积的冲积平原4种地貌单元。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号