首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 312 毫秒
1.
用溶胶-凝胶法制备了Li4 xBxSi1-xO4-yLi2O(x=0.1-0.6;y=0.0-0.5)离子导体材料,并用DTA-TG,XRD及交流阻抗等技术对样品进行了测试,结果发现用溶胶-凝胶法可降低Li4 xBxSi1-xO4的合成温度;随Li2O的掺入可增强基质材料的致密性并可提高其离子的导电性能。  相似文献   

2.
通过溶胶凝胶法制备Li4Ti5O12及锌掺杂Li4-2x/3ZnxTi5-x/3O12(x=0.05,0.10,0.15,0.20)活性材料,并优化了最佳掺杂量为x=0.10。通过X射线衍射(XRD)、扫描电镜(SEM)、恒流充放电测试对材料进行结构、形貌及电化学性能表征。结果表明:掺杂适量的锌离子不会改变钛酸锂的尖晶石结构和形貌,1C时,Li3.93Zn0.10Ti4.97O12放电比容量升高且容量保持率为99.74%;而纯相的容量保持率仅为94.30%。  相似文献   

3.
以柠檬酸为配合剂,用溶胶-凝胶法合成了Li3.4Si0.4V0.6O4-xLi3PO4(x=0.10-0.50)复合锂离子导体,并用DTA,XRD,AC阻抗技术等对复合物进行了表征。结果表明,当第2相含量为0.30时,室温电导率最高,为1.57μS/cm。  相似文献   

4.
锂离子电池正极材料Li1+xMn2-xO4的Jahn-Teller效应   总被引:1,自引:0,他引:1  
锂离子电池正极材料在循环过程中存在着容量衰减的问题,其中Jahn-Teller效应是锂离子电池正极材料尖晶石LiMn2O4在应用中容量衰减的难点。文章利用溶胶凝胶法制备富锂尖晶石Li1 xMn2-xO4,通过X射线衍射、晶格参数和cMn4 /cMn3 比值等参数,研究尖晶石LiMn2O4的Jahn-Teller效应;结果表明,当煅烧温度t=650℃,x=0.05时,有利于抑制Jahn-Teller效应。  相似文献   

5.
锂基陶瓷是氚增殖材料的主要选材料之一。以正硅酸乙酯和硝酸锂为主要原料,采用溶胶-凝胶法合成了Li4SiO4陶瓷粉体,利用湿法成球技术制备了毫米级Li4SiO4陶瓷微球。结果表明:PH值对Li4SiO4陶瓷粉体的相结构有较大影响。在中性和酸性条件下得到的是Li4SiO4与Li2SiO3的混合相,而在碱性条件下得到的是纯Li4SiO4相。凝胶剂质量分数在10%的时候能得到球形度跟强度都好的陶瓷球。950℃为Li4SiO4陶瓷微球的最佳烧结温度,此时烧结的陶瓷球的密度最大,为理论密度的85.48%。该研究为获得低成本、高性能的锂基陶瓷微球提供了依据。  相似文献   

6.
柠檬酸盐溶胶-凝胶法合成Li3-2xZnxPO4及其离子导电性   总被引:1,自引:0,他引:1  
采用柠檬酸盐溶胶-凝胶法制备了组成为Li3-2xZnxPO4(x=0.1-0.5)的固体粉末和饱结体,对其相结构的研究结果表明,当x=0.1-0.4时,烧结体是由γI-Li3PO4和α-Li4Zn(PO4)2两相构成的混合相,而x=0.5时,烧结体的相组成为α-Li4Zn(PO4)2单相,用这种合成方法得到样品的合成温度较传统的固相合成降低了约400℃,用交流阻抗技术测定了烧结体的导电性,随着组成的不同,样品显示不同程度的导电性,当x=0.5,相结构为α-Li4Zn(PO4)2时,样品具有最高的导电性,25℃时σ=1.66μS/cm.  相似文献   

7.
Li3V2(PO4)3掺镍的性能研究   总被引:2,自引:0,他引:2  
摘要:采用溶胶凝胶法制备了锂离子电池正极材料Li3+xNixV2-x(PO4)3(x=0、0.05、0.10、0.20).通过XRD和SEM图谱对材料的结构及表面形貌进行了表征,结果表明Li3+xNixV2-x(PO4)3与Li3V2(PO4)3具有相同的结构,均属单斜晶系P2 1/n,掺杂后样品的颗粒随着Ni含量的增加而变大.循环伏安和充放电测试表明,随着Ni含量的增加,Li3+xNixV2-x(PO4)3的充放电容量降低,循环性能也变差,说明掺杂后样品的电化学性能变差.  相似文献   

8.
采用柠檬酸盐溶胶-凝胶法制备了组成为Li3-2xZnxPO4(x=0.1~0.5)的固体粉末和烧结体,对其相结构的研究结果表明,当x=0.1~  相似文献   

9.
以多壁纳米碳管和Si(OC2H5)4为原料,采用液相法合成包覆了SiO2的多壁碳纳米管(MWCNTs@SiO2),通过调节Si(OC2H5)4的加入量,制备出不同载硅量的前驱体MWCNTs@SiO2,并以此种前驱物合成硅酸铁锂Li2FeSiO4/C材料.采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、恒流充放电对Li2FeSiO4/C材料进行了表征及电化学性能测试,实验结果表明载硅量为35.72%的MWCNTs@SiO2前驱体合成的Li2FeSiO4/C材料颗粒大小一致,在0.1C电流密度下循环50圈后获得180 mAh·g-1的稳定放电比容量,具有优良的电化学性能.  相似文献   

10.
采用溶胶凝胶法制备Li4-x/3FexTi5-2x/3O12(x=0,0.03,0.06,0.09)粉体活性材料,并优化了最佳掺杂量为x=0.03。通过X射线衍射(XRD)、扫描电镜(SEM)、恒流充放电测试对材料进行结构、形貌及电化学性能表征。结果表明:掺杂适量的铁离子不会改变钛酸锂的尖晶石结构和形貌。1C时,Li3.99Fe0.03Ti4.98O12首次放电比容量为145.40 m A·h/g;纯相的首次放电比容量仅为116.95 m A·h/g。  相似文献   

11.
以曲拉通100作表面活性剂,用超声波法制备了球形度较好、平均粒径为10μm的球形Li3PO4。以球形Li3PO4为前驱体制备了部分球形的LiFePO4,并对其电化学性能进行了研究。由该法制备的LiFePO4振实密度为1.20 g/cm3,较其他方法制备的LiFePO4密度有所提高。  相似文献   

12.
Li4Ti5O12作为混合电化学电容器负极材料的电化学性能   总被引:4,自引:0,他引:4  
通过XRD,SEM,BET及电化学测试等手段研究了高温固相合成条件对尖晶石Li4Ti5O12粉体结构、形貌、孔径分布的影响及其在Li4Ti5O12/C混合电化学电容器中的电化学性能.研究表明:采用800.℃合成温度,保温2.h的合成条件获得的尖晶石Li4Ti5O12中孔发达,电化学性能良好,其比表面积为4.4.m2·g-1.该样品采用175.mA·g-1充放电时的比容量约为150.mAh·g-1,功率特性和循环性能良好.  相似文献   

13.
通过高温固相法,选择不同的焙烧温度、焙烧时间、锂源过量比例(质量比)及研磨方式、焙烧程序等合成条件,研究了制备纯相Li_4Ti_5O_(12)的最适合条件.结果表明:多次研磨和1次焙烧有助于制备较纯产物,焙烧温度和焙烧时间对产物的纯度有一定影响,锂源过量比例对产物纯度影响较大.通过XRD分析,当锂源过量8%时,产物在2θ=20.5°处有杂峰(Li_2TiO_3),主峰(2θ=43.4°)略有分裂(LiTiO_2);当锂源过量5%时,产物基本为纯相Li_4Ti_5O_(12)杂峰消失.研究表明制备纯相Li_4Ti_5O_(12)最适合的实验条件为:锂源过量5%,焙烧温度800℃,焙烧时间12 h,反应物经过2次研磨,1次焙烧得到纯相Li_4Ti_5O_(12).  相似文献   

14.
Li3Sn的电子和几何结构:第一原理计算   总被引:1,自引:0,他引:1  
CuSn化合物在近来的锂电池负极材料研究中引起了相当的重视.使用基于混合基表示的第一原理赝势法,研究了Li插入CuSn完全替代了Cu而且占满所有间隙位置后形成的Li3Sn的电子与几何结构性质.给出了其"结构~能量"关系图,电子能带结构,电子态密度以及电荷密度分布等.  相似文献   

15.
以氢氧化锂、醋酸锌、二氧化硅气凝胶为原料,采用溶胶一凝胶法制得一定Si—Zn—Li摩尔比值的具有很强发光效果的ZnO:Li4SiO4荧光体.考察了锂锌比、不同碱金属离子、pH值和洗涤方式对荧光体发光性能的影响,并对其发光行为进行初步探索,得到一些有意义的结论.  相似文献   

16.
以曲拉通100作表面活性剂,用超声波法制备了球形度较好、平均粒径为10μm的球形Li3PO4。以球形Li3PO4为前驱体制备了部分球形的LiFePO4,并对其电化学性能进行了研究。由该法制备的LiFePO4振实密度为1.20g/cm^3,较其他方法制备的LiFePO4密度有所提高。  相似文献   

17.
Li4Ti5O12的合成及其影响因素   总被引:6,自引:0,他引:6  
以无定形TiO2为原料,反应物无需压制,在1 000 ℃反应8 h制得性能较好的纯尖晶石相Li4Ti5O12, 充放电电流为0.5c时比容量为127 mA·h·g-1,0.1c时比容量达145 mA·h·g-1.正交实验结果表明,固相反应合成条件对Li4Ti5O12循环容量影响从大到小的顺序为:温度,时间,n(Li)/n(Ti)和原料特性;在800~1 000 ℃之间,原料特性决定最佳反应温度,温度决定反应时间,反应物最佳摩尔比约为0.84.  相似文献   

18.
利用实验室用扣式电池模块对磷酸铁锂正极材料的循环性能进行评估,发现采用全密封结构的扣式电池模块,可以较好地评价磷酸铁锂正极材料的循环性能.主要的控制因素是拧紧力、密封性和隔膜的隔离效果.当几个因素达到优化配合时,可以使磷酸铁锂材料的循环性能达到最佳.实验表明,利用扣式锂电池模块可以进行超过500次的循环测试,且电池制造的成功率和测量一致性大大提高,可以替代全电池评价材料的循环性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号