首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
船用交错轴变厚齿轮啮合性能的研究   总被引:1,自引:0,他引:1  
基于空间齿轮啮合原理和有限单元法,分别建立了船用交错轴变厚齿轮齿面模型及啮合模型.在承载和安装误差的作用下,对船用交错轴变厚齿轮传动啮合特性进行了分析,研究了中心距误差、轴交角误差和大齿轮轴向位置误差对啮合印痕、最大接触压力、传动误差及啮合刚度的影响规律.结果表明,中心距和轴交角误差使得啮合印痕发生明显的偏移,造成最大接触压力及传动误差的峰峰值增加,且中心距及轴交角的正负误差对啮合刚度的影响呈相反的趋势,但大齿轮轴向位置的误差对啮合特性影响较小.通过加载啮合特性试验,验证了理论啮合分析结果的正确性,这对船用交错轴变厚齿轮传动匹配设计具有重要的指导意义.  相似文献   

2.
交错轴非渐开线变厚齿轮齿形误差与齿向误差的分析   总被引:3,自引:0,他引:3  
很多进口机械中应用了交错轴非渐开线变厚齿轮传动,目前国内在该领域的研究还是空白。为了在国内现有机床上实现交错轴非渐开线变厚齿轮的加工,必须对该种齿轮的齿形误差与齿向误差进行分析,这方面的研究国内外未见报道。该文基于空间啮合理论,利用微分几何方法首次对该种齿轮的齿形误差与齿向误差进行计算,并给出计算实例。计算结果表明,可通过轮齿修形实现该种齿轮的加工。  相似文献   

3.
再论啮合轴     
本文导出并论证了普遍情况下齿轮传动的啮合轴存在判定定理;得出了确定啮合轴位置的具体公式.在螺旋参数P_r=0时的齿轮传动,其瞬时轴必为啮合轴;仅当接触点处的公法线构成一固定平面时,才存在无数根啮合轴.在螺旋参数P_r≠0时的齿轮传动,仅当某一齿面为螺旋面时,才可能存在啮合轴.  相似文献   

4.
本文对剃削渐开线斜齿圆柱齿轮时,实现平衡接触剃齿,以避免齿形中凹误差的条件进行了探讨,并推导了达到平衡接触剃齿所需滞后角φ的计算公式。该计算式可供设计大、小啮合角剃齿刀时参考。  相似文献   

5.
多轴控制系统的轮廓误差具有强耦合特点,由于是多轴联动产生的结果,仅提高单轴的跟踪精度不一定能降低轮廓误差。为降低珩齿多轴控制系统的齿面轮廓误差,进一步提高珩齿的加工精度,文章提出一种简单有效的补偿控制策略。分析珩齿机的机床结构,根据珩齿多轴电子齿轮箱(electronic gearbox, EGB)控制系统的数学模型推导出基于齿轮啮合原理和坐标变换的齿面轮廓误差数学模型,并设计出一种简单的齿面轮廓误差补偿控制器。仿真和实验结果表明,所提出的补偿控制策略对降低齿面轮廓误差有显著的效果。该文方法对提高珩齿实际加工精度具有一定的指导意义。  相似文献   

6.
运用啮合原理、微分几何和弹性力学等基础理论,对剃齿过程中的切削深度进行分析计算、定量解释并验证了被剃齿面产生的齿形中凹误差,对提高剃齿精度、降低齿轮传动噪音有着重要意义。  相似文献   

7.
影响轴齿轮滚齿加工精度原因分析   总被引:1,自引:0,他引:1  
范玉泉  李勃 《山西科技》2010,25(5):105-105,107
通过对轴齿轮滚齿加工精度的分析,找出影响滚齿加工精度的因素,以便提高滚齿加工质量。  相似文献   

8.
剃前插齿刀为一种专用插齿刀,能否使其标准化,关系到这种插齿刀是否能在生产中广泛使用的问题。本文对目前生产中常用的二种齿形的剃前插齿刀进行了系统地分析研究,从而得出结论:剃前插齿刀可以标准化,并且从标准化的观点及磨齿误差来看,标准化的剃前插齿刀采用插齿后得到余量不均匀分布的齿形是比较合理的。  相似文献   

9.
五轴数控加工误差分析及补偿方法   总被引:1,自引:1,他引:0  
分析了五轴数控加工过程中误差产生的主要原因,并针对其原因介绍了误差补偿方法,为五轴数控加工提供了技术支持,具有现实意义和实际应用价值。  相似文献   

10.
首先,设计齿廓、齿向修形曲线,经过3次B样条拟合为拓扑修形曲面,并与理论齿面叠加设计修形齿面;其次,根据成形磨削过程中砂轮与齿轮之间的运动关系,推导成形砂轮与齿面的接触条件方程,计算砂轮的廓形点,再通过3次B样条拟合得到精确的砂轮轴向廓形曲线;然后,建立成形砂轮磨削斜齿轮5轴联动Free-Form型数控磨齿机模型,根据砂轮位矢的等效转换,推导各轴运动关系;接着,建立基于数控机床各轴敏感性分析的齿面修正模型,用6阶多项式表示各轴的运动,判断砂轮与齿面的接触状态,确定磨削齿面的误差,并分析各系数扰动对齿面误差的影响;最后,以齿面误差平方和最小为目标函数,通过粒子群优化方法,得到机床运动参数.结果表明,以齿廓修形齿面反算砂轮截形进行5轴数控成形磨齿加工,可有效降低磨削误差.  相似文献   

11.
GIS数据误差分类与来源   总被引:2,自引:1,他引:2  
数据是GIS的核心与投资重点,GIS数据包括空间数据和属性数据。位置误差主要来源于直接测量的误差、地图数字化的误差遥感数据的误差、数据转换误差、数据输入与存储误差。属性误差主要来源于拓扑分析误差、数据分类误差、文本文件数据的误差和人工解译误差。GIS误差还包括时效误差、逻辑一致性误差和数据完整性方面的误差。  相似文献   

12.
本文提出了一种分析Stewart机器人位姿误差的方法,即将各个关节引入的误差以及伺服定位误差对位姿误差的影响,都归算为杆件长度误差引起的位姿误差,并给出了按杆件长度误差计算位姿误差的关系式。  相似文献   

13.
王云秀 《科技信息》2011,(33):371-372
本文采用学生英语习作中犯有词汇错误的句子作为例句,列举了几种常见的英语词汇错误:拼写错误、搭配错误、词类错误、缺失错误、冗余错误和指代错误,并对其成因进行了分析。要克服这些错误,学生应该在了解英汉语言之间相关差异和英语具体规则的基础上,通过多种渠道增加英语输入量,同时通过说、写等输出活动来巩固所学词汇知识,逐步提高词汇运用能力。  相似文献   

14.
为了便于对自由曲面的加工误差进行分析,应用空间统计方法分析加工误差数据,将构成加工误差的系统误差和随机误差这两部分分解出来。该方法首先对加工误差进行空间统计分析,判断加工误差的空间自相关性,然后构造基于B样条曲面的确定性曲面回归模型,计算各个测点的残差后对该回归模型进行充分性分析,将服从空间独立分布的残差作为分解后的随机误差,进而得到系统误差。针对一个自由曲面进行仿真验证。结果表明,该误差分解方法精确、有效。再对上述自由曲面进行数控加工,并获得该工艺系统的系统误差,根据该系统误差进行补偿加工,显著提高了零件的加工精度。   相似文献   

15.
以某校英语专业同一批学生两次终结性考试200篇作文录入电脑,对其中的拼写错误、语法错误、样式错误和句法错误进行人工标注。以中介语理论为基础,利用易改英语写作辅助软件和SPSSll.5数据统计分析软件对数据进行统计和对比分析。结果显示,大四试卷中拼写错误和样式错误的减少统计不具显著性,语法错误和句法错误的增多则显示了统计显著性;写作成绩和错误类型之间却没有呈现相关性。  相似文献   

16.
通过求偏导技术将反分析的参数误差分别表示为模型误差与测量误差的函数,利用这些函数研究了模型误差与测量误差在力学参数反分析神经网络方法中的传递过程以及影响反分析结果的影响因素.研究结果说明:输入变量的选择严重影响力学参数反分析的精度,选取力学参数灵敏度大的测点位移作为神经网络的输入变量,可以减小模型误差与测量误差对反分析结果的影响.这对提高力学参数反分析的实用性与可信性有重要意义.  相似文献   

17.
基于体对角线机床位置误差的激光矢量测量分析   总被引:5,自引:0,他引:5  
机床空间位置误差的测量和补偿是提高加工精度的重要手段。通过分析机床沿4条体对角线的位移误差与空间位置误差间的矢量关系,提出了利用体对角线多步运动测得的位移误差分离机床运动轴位置误差的矢量分析方法。分析结果表明,新方法不仅可以反映机床的几何精度,而且可以快速分离出3个运动轴的9项位置误差,为实施数控机床的空间位置误差补偿提供了理论基础。  相似文献   

18.
快速检测三坐标测量机垂直度误差的新方法   总被引:5,自引:0,他引:5  
根据三坐标测量机空间误差与几何误差关系,使用Renishaw检查规,通过测量xy、yz和xz平面内特定圆周上各点的空间误差,可快速获得垂直度误差.使用该方法可快速、准确和方便地检测三坐标测量机垂直度误差,在安装和调试大量程三坐标测量机时,可快速检测,根据检测结果及时调整,方便快捷.  相似文献   

19.
根据齿轮精度标准中误差的定义和说明,提出一种用于齿轮动力学分析的安装与制造误差等效定义,采用Pro/E二次开发,建立带有安装与制造误差的齿轮参数化模型;基于动态接触力学和显式动力学有限元算法,建立齿轮有限元模型;采用大变形显式动力学软件ANSYS/LS-DYNA对其进行动态仿真,从而实现求解齿轮在接触过程中安装与制造误差影响下的动态接触应力.研究表明,各类随机误差愈大,则对齿轮啮合冲击应力的影响愈大,其中齿距方向的偏差和啮合面上转角误差对齿轮接触应力的影响最大,啮合垂直面上转角误差的影响最小,当齿轮的安装误差与制造误差同时存在时,齿面接触应力变化最为剧烈.  相似文献   

20.
基于普通编码器的高精度位置检测方法   总被引:2,自引:0,他引:2  
根据普通增量式光电编码器测量转角位置的原理,分析了量化误差的形成原因和编码器脉宽制造误差对测量精度的影响,提出了新的信号处理算法——脉冲细分法,利用该方法减小了量化误差.同时标定出编码器的脉宽系数井以它作为脉宽制造误差的补偿参数,消除对位置测量造成的影响,最终提高了系统的测量精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号