首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对高瓦斯综采工作面瓦斯含量高、瓦斯涌出量大、开采强度大等特点,提出在回采巷道掘进和工作面回采过程中进行瓦斯立体抽采的治理方法,巷道掘进期间通过底抽巷穿层钻孔与掘进工作面顺层钻孔形成立体抽采系统;工作面回采期间利用底抽巷穿层抽采、工作面顺层抽采和高抽巷组成立体抽采系统,确定了瓦斯立体抽采的主要技术参数;结合赵庄煤矿1307工作面实际的地质条件和开采条件,进行了瓦斯立体抽采试验.研究结果表明:瓦斯立体抽采大幅度降低了工作面的瓦斯含量,瓦斯抽排率达到69.28%,瓦斯抽采效果显著,是一种良好的瓦斯治理方法,实现了工作面掘进和回采期间的安全生产.  相似文献   

2.
孔正 《科技信息》2012,(19):433-433
新集二矿111310机巷掘进工作面为突出煤层的无突出危险工作面,通过布置超前预抽钻孔保护工作面安全掘进,预抽钻孔在松软煤层中施工,易出现塌孔、喷孔等孔异常现象造成孔内事故,制约了钻孔施工深度和速度,通过改进钻孔施工工艺和边抽边施工的方案,有效解决了巷道前方瓦斯隐患,确保了巷道安全掘进。  相似文献   

3.
针对梁北矿11141煤与瓦斯突出工作面,掘进期间瓦斯含量高,效检超标、掘进风流瓦斯超限问题;采用底抽巷施工水力压裂增透、卸压方法,强化抽采瓦斯;控制范围内瓦斯预抽率提高到32%,降低了风流中瓦斯浓度,效检超标率显著降低;保证了掘进工作面正常生产,为类似条件下工作面安全掘进提供了瓦斯防治依据。  相似文献   

4.
石开阳 《广东科技》2013,22(8):131-132
为了解除煤巷掘进期间的煤与瓦斯突出危险和解决工作面回采时的瓦斯超限问题,在盛远煤矿31106工作面顶板上方布置高位巷,从高位巷内向下施工穿层钻孔在掘进前预抽掘进条带瓦斯,利用高位巷在工作面回采时抽采空区上部卸压瓦斯。采用一巷两利用的高位巷抽采瓦斯方法后,巷道掘进时无煤与瓦斯突出发生,工作面回采时回风流最高瓦斯体积分数不超过0.8%、上隅角最高瓦斯体积分数不超过0.94%。主要介绍了高位巷的一巷两用技术,通过矿井实例,加强了对瓦斯综合抽采的技术研究与应用,具有重要意义。  相似文献   

5.
王涛 《科技信息》2011,(9):333-333,341
为了实现煤矿高瓦斯复杂地质条件下快速掘进,本文依据掘进巷道瓦斯来源及其浓度分布规律,以复杂地质条件下掘进工作面瓦斯防治新技术在界沟应用为背景,介绍了双路大功率局部通风机供风、掘进期间执行循环前探钻孔、巷帮抽放瓦斯技术,该技术重点突出稳定局部通风、加大瓦斯风排量、超前预测、超前治理瓦斯综合防治技术消除了高瓦斯给掘进工作面带来的安全生产隐患,提高了掘进速度,社会和经济效益显著,适用于高瓦斯矿井高产高效掘进工艺要求,是一种很实用掘进工作面瓦斯防治技术。  相似文献   

6.
为解决相邻两工作面上隅角瓦斯超限难题和实现高抽巷"一巷两用",提出外错高抽巷布置方式:沿上工作面回风顺槽侧,在煤层顶板内外错布置走向高抽巷;在高抽巷服务前期,在其内采用高位钻孔抽采上工作面采动卸压瓦斯;在高抽巷服务后期,直接采用高抽巷抽采下工作面采动卸压瓦斯;实现1条高抽巷服务于相邻两工作面,提高高抽巷利用效率。基于山西霍州煤田集团李雅庄煤矿2-603工作面地质条件,建立外错高抽巷围岩结构力学模型,采用理论分析、数值模拟、相似材料模拟及现场实测等研究方法系统分析工作面覆岩采动裂隙发育特征,研究覆岩采动裂隙分布规律,确定外错高抽巷和高位抽采钻孔布置参数;基于高位钻孔测斜结果,提出角度补偿纠偏方法及纠偏效果评价指标。高抽巷位于2煤层顶板25.0 m处,外错2-603工作面25.0 m;高位钻孔终孔位于顶板44.0 m处,水平及倾斜方向上的纠偏角分别为-3°和-2°。研究结果表明:高抽巷受2-603工作面采动影响较小,巷道断面能满足下区段2-605工作面抽采要求;高位钻孔终孔位置合理,高位钻孔抽采瓦斯体积分数高,且持续抽采时间长;采用角度补偿纠偏方法后钻孔瓦斯体积分数的最大值和平均值较纠偏前分别提高15.3%和11.6%,2-603工作面生产班、检修班上隅角瓦斯体积分数分别为0.504%~0.951%和0.467%~0.893%,解决了工作面隅角瓦斯超限难题,保障了工作面安全高效开采。  相似文献   

7.
水力压裂增透技术在煤巷掘进中的应用   总被引:2,自引:0,他引:2  
针对高瓦斯低透气性突出煤层,若直接采用钻孔抽放瓦斯,则存在抽采效果差、抽放时间长、抽放率不高的问题。为提高低透气性煤层的抽放效率,达到预防瓦斯突出的效果,运用水力压裂增透技术在同华煤矿K1半煤岩巷掘进工作面进行了试验。试验结果表明,采用水力压裂能够增加煤层透气性,提高单孔瓦斯抽采浓度和流量,减少防突施工对掘进工作的影响,提高预抽瓦斯效果,减少掘进面生产期间的安全隐患。使掘进面瓦斯日抽采量增加120%以上、日掘进进度增加80%以上。  相似文献   

8.
李渊 《科技信息》2009,(36):254-255
本文通过对塔山矿综采工作面瓦斯治理的现场实践进行分析研究,阐述了利用工作面内错式走向顶板高抽巷解决综放工作面上隅角、后遛尾瓦斯超限的机理及办法,同时对顶板高抽巷治理工作面瓦斯超限的效果进行了验证,最终肯定了顶板高抽巷在治理塔山矿综采工作面瓦斯超限过程中的可行性和有效性。  相似文献   

9.
为了探究高抽巷瓦斯抽采对工作面安全开采的影响,依据401101工作面的巷道布置情况,建立了工作面与采空区的数学物理模型。应用Fluent软件对工作面在有无高抽巷及高抽巷不同抽采能力下采空区的氧浓度以及瓦斯浓度分布规律进行了数值模拟,获得了上隅角瓦斯浓度与采空区氧浓度分布情况。模拟结果与现场实测数据表明:高抽巷能有效解决工作面上隅角瓦斯超限问题;随高抽巷抽采瓦斯能力的增大,上隅角瓦斯浓度不断降低,但采空区氧化升温带的宽度和深度会增加,使得煤自燃危险性和防灭火压力增大;综合考虑防止瓦斯超限及采空区煤自燃,并保证工作面安全开采,高抽巷瓦斯抽采能力以0.25~0.3为宜。  相似文献   

10.
殷元祥  周访玉  朱康华 《科技信息》2010,(23):I0377-I0378
在有突出危险掘进工作面掘进时,如果采用单一的局部超前排放钻孔的防突措施,即使在效果检验指标不超限的情况下,也有可能发生瓦斯超限,甚至发生煤与瓦斯突出事故。张集矿在东三采区9367皮带机道掘进工作面通过采用巷帮挂耳抽放、深孔卸压、随打即抽及超前排放钻孔等综合措施的应用尝试,在防治煤与瓦斯突出的探索方面取得了较好的成效。保证了掘进工作面在防突条件下的快速安全掘进。  相似文献   

11.
为获取走向高抽巷抽采瓦斯的最佳位置,构建走向高抽巷条件下的采空区瓦斯运移模型.通过FLUENT数值模拟软件分析了高抽巷与回风巷不同平距,与煤层顶板不同垂距条件下,抽采瓦斯的效果.数值模拟和现场应用结果表明:高抽巷布置在回风巷附近,与倾向断裂线边界0.46倍带宽(回风巷侧裂隙带);且位于冒落带之上,与其边界垂高2.8倍采高时,效果最好,能有效解决工作面瓦斯超限问题,保证工作面安全回采.  相似文献   

12.
刘建伟  芦军 《科技信息》2007,(18):249-249
该文通过对急倾斜煤层群掘进瓦斯涌出规律分析,阐述了利用巷帮走向钻孔对下邻近层卸压瓦斯进行抽放,解决了工作面及回风巷瓦斯超限的问题。  相似文献   

13.
为研究高抽巷在采空区瓦斯抽采和上隅角瓦斯治理方面的应用,以及探究高抽巷抽采层位对采空区瓦斯分布规律的影响,以李阳煤矿15302综放工作面为研究对象,运用Fluent数值模拟软件对采空区未抽采和不同层位高抽巷抽采时的瓦斯分布进行模拟,通过对比瓦斯抽采浓度和上隅角瓦斯浓度的数据,分析高抽巷在不同层位的瓦斯抽采效果,将模拟结果与现场实际相结合,设计适合的高抽巷抽采层位方案,并用现场实测数据进行验证。结果表明:高抽巷瓦斯抽采浓度随抽采位置距顶板垂直高度的增加而升高,随着距回风巷水平距离的增加先升高后降低,上隅角瓦斯浓度随垂距和平距的增加均先降低后升高;理论最佳抽采层位为垂距30 m,平距32 m,工作面上隅角瓦斯浓度在0.19%以内,设计抽采层位为垂距40 m,平距35 m,工作面上隅角瓦斯浓度维持在0.63%~0.65%.选取合理的高抽巷抽采层位不仅有利于提高瓦斯抽采效果,而且能有效解决上隅角瓦斯超限的问题。  相似文献   

14.
 针对低透气性煤层掘进过程中,瓦斯抽放难度高、掘进效率低等难点问题,提出应用CO2增透预裂技术,提升煤层透气性系数与瓦斯抽放效率,提高工作面掘进效率。应用岩土力学模拟软件,模拟分析了煤层掘进过程中煤体破坏分布与应力分布状态。模拟结果表明:掘进过程中,巷道两帮破碎区域为距巷帮0~3m的范围,巷帮主要应力集中区域为距巷帮3~4m的区域,应力为18.0~18.9MPa。根据数值模拟结果,设计了煤层CO2增透的预裂孔与抽放孔的详细参数,进行了现场验证。现场试验与效果分析表明:预裂前后钻场瓦斯抽采瓦斯纯流量提高了27%,瓦斯抽放浓度提高了1.7倍,可解吸瓦斯量由7.27降到4.30m3/t,掘进效率明显提高。  相似文献   

15.
为了有效解决大采高综放工作面部分区域瓦斯超限问题,本研究采用数值模拟方法对不同层位高抽巷进行对比分析,研究沿采场垂直高度、采场走向深度及倾向长度的瓦斯流动规律及瓦斯浓度分布规律。以上隅角瓦斯浓度和抽采浓度作为判断依据,模拟分析无高抽巷、高位高抽巷、低位高抽巷三种情形下的不同区域瓦斯浓度和抽采量。结果显示,随着瓦斯扩散距离增加,瓦斯浓度逐渐升高,瓦斯的升浮-扩散效应就越明显。应用高位高抽巷和低位高抽巷后,瓦斯体积分数在回风巷侧下降率分别为22.9%~37.7%和31.8%~46.2%;其中,上隅角处瓦斯体积分数分别降低了33.4%和38.3%.此外,低位高抽巷和高位高抽巷瓦斯抽采体积分数分别为0.95%和0.41%;其中,低位高抽巷瓦斯有70.5%来源于工作面,抽采量是高位高抽巷的2.32倍。研究结果表明,低位高抽巷在大采高综放工作面上隅角及回风巷瓦斯治理中有很好的发展前景,可以有效降低上隅角瓦斯超限的风险。  相似文献   

16.
随着煤矿巷掘进技术的不断提高,高产、高效、安全的掘进巷道建设已经成为煤矿生产的关键。随着近几年采煤工艺的发展,采煤的效率、掘进机械的机械化程度不断的提高,采煤工作面数目在大幅度减少,逐渐走上了良好的发展道路.然而,在巷道掘进过程中还存在一些制约其掘进速度的因素,本文以我矿的开拓工作面为例,浅析开拓巷道掘进速度的影响因素并提出相应的对策。  相似文献   

17.
为得到某矿综放工作面在梯形剪切破断顶板情况下的高抽巷的合理布置层位.采用相似材料模拟试验方法对综放工作面回采过程中顶板破断规律进行模拟,得到了随着工作面推进岩层破断的力学结构及覆岩的下沉量.研究结果表明:综放工作面推进过程中竖向贯通裂隙主要由顶板岩层拉剪破坏产生,拉破坏受到岩层碎胀特性的制约,剪破坏形成纵向贯通范围较大的裂隙,剪切裂隙是沟通煤层与高抽巷的主要通道,最大破坏高度受到岩层碎胀性制约,且呈周期性分布特征.高抽巷应布置在剪切裂隙纵向贯通最高位置处,且在开切眼附近高抽巷应向下施工.  相似文献   

18.
采空区瓦斯抽采与煤自燃防控相互影响,工作面配风量、抽采负压和高抽巷位置等参数影响了采空区自燃危险区域范围。通过在天池矿301工作面采空区内布置监测点并分析气体变化,确定了采空区瓦斯与煤自燃灾害协同防控的关键区域。结合瓦斯抽采和采空区煤自燃的耦合作用机制,采用数值模拟和现场实测方法确定了工作面配风量、高抽巷位置以及推进度等主要关键参数。研究结果表明:当工作面配风量为3 000~3 500 m3/min,推进度为1.39~6.84 m/d,高抽巷与顶板垂距为30 m,与回风巷平距为25 m,抽采负压为14.5~17.5 k Pa时,既能确保抽采效果,也可有效地防止采空区煤自燃。  相似文献   

19.
尹兴科 《科技信息》2007,(30):38-38
新集二矿W1607综采面是我矿西翼采区6煤的首采面,目前已经推进493m左右,受地质构造影响,工作面上部约30m范围全岩,不仅严重制约工作面回采进度,更存在较大的安全隐患。为确保工作面安全、经济回采,矿研究决定施工下降风巷撤出上部20台支架,为此原有的高抽巷、顺层孔抽放瓦斯,已不能满足瓦斯综合治理需求,经过讨论研究,制定了尾巷抽放采空区瓦斯,下降风巷每隔5米打联络孔透高抽巷抽放等综合治理措施,为我矿的安全生产提供了保障,也为今后的瓦斯治理提供了经验。  相似文献   

20.
3304综放工作面在推进过程中所遇到的大断层及探巷,通过预先掘进完成的探巷来合理的找准断层的层位关系,合理的控制工作面采高。同时探巷的提前完成并采取科学合理的支护方式,也有效的释放了大断层造成的工作面回采压力。同时区队一系列的管理措施,也对工作面的顺利通过断层和探巷也起到了关键作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号