首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most models of melt generation beneath mid-ocean ridges predict significant reduction of melt production at ultraslow spreading rates (full spreading rates &<20 mm x yr(-1)) and consequently they predict thinned oceanic crust. The 1,800-km-long Arctic Gakkel mid-ocean ridge is an ideal location to test such models, as it is by far the slowest portion of the global mid-ocean-ridge spreading system, with a full spreading rate ranging from 6 to 13 mm x yr(-1) (refs 4, 5). Furthermore, in contrast to some other ridge systems, the spreading direction on the Gakkel ridge is not oblique and the rift valley is not offset by major transform faults. Here we present seismic evidence for the presence of exceptionally thin crust along the Gakkel ridge rift valley with crustal thicknesses varying between 1.9 and 3.3 km (compared to the more usual value of 7 km found on medium- to fast-spreading mid-ocean ridges). Almost 8,300 km of closely spaced aeromagnetic profiles across the rift valley show the presence of discrete volcanic centres along the ridge, which we interpret as evidence for strongly focused, three-dimensional magma supply. The traces of these eruptive centres can be followed to crustal ages of approximately 25 Myr off-axis, implying that these magma production and transport systems have been stable over this timescale.  相似文献   

2.
Submarine hydrothermal venting along mid-ocean ridges is an important contributor to ridge thermal structure, and the global distribution of such vents has implications for heat and mass fluxes from the Earth's crust and mantle and for the biogeography of vent-endemic organisms. Previous studies have predicted that the incidence of hydrothermal venting would be extremely low on ultraslow-spreading ridges (ridges with full spreading rates <2 cm x yr(-1)-which make up 25 per cent of the global ridge length), and that such vent systems would be hosted in ultramafic in addition to volcanic rocks. Here we present evidence for active hydrothermal venting on the Gakkel ridge, which is the slowest spreading (0.6-1.3 cm x yr(-1)) and least explored mid-ocean ridge. On the basis of water column profiles of light scattering, temperature and manganese concentration along 1,100 km of the rift valley, we identify hydrothermal plumes dispersing from at least nine to twelve discrete vent sites. Our discovery of such abundant venting, and its apparent localization near volcanic centres, requires a reassessment of the geologic conditions that control hydrothermal circulation on ultraslow-spreading ridges.  相似文献   

3.
Jean-Baptiste P  Fourré E 《Nature》2004,428(6978):36
In the hydrothermal circulation at mid-ocean ridges, sea water penetrates the fractured crust, becomes heated by its proximity to the hot magma, and returns to the sea floor as hot fluids enriched in various chemical elements. In contradiction to earlier results that predict diminishing hydrothermal activity with decreasing spreading rate, a survey of the ultra-slowly spreading Gakkel Ridge (Arctic Ocean) by Edmonds et al. and Michael et al. suggests that, instead of being rare, the hydrothermal activity is abundant--exceeding by at least a factor of two to three what would be expected by extrapolation from observation on faster spreading ridges. Here we use helium-3 (3He), a hydrothermal tracer, to show that this abundance of venting sites does not translate, as would be expected, into an anomalous hydrothermal 3He output from the ridge. Because of the wide implications of the submarine hydrothermal processes for mantle heat and mass fluxes to the ocean, these conflicting results call for clarification of the link between hydrothermal activity and crustal production at mid-ocean ridges.  相似文献   

4.
Seafloor spreading is accommodated by volcanic and tectonic processes along the global mid-ocean ridge system. As spreading rate decreases the influence of volcanism also decreases, and it is unknown whether significant volcanism occurs at all at ultraslow spreading rates (<1.5 cm yr(-1)). Here we present three-dimensional sonar maps of the Gakkel ridge, Earth's slowest-spreading mid-ocean ridge, located in the Arctic basin under the Arctic Ocean ice canopy. We acquired this data using hull-mounted sonars attached to a nuclear-powered submarine, the USS Hawkbill. Sidescan data for the ultraslow-spreading (approximately 1.0 cm yr(-1)) eastern Gakkel ridge depict two young volcanoes covering approximately 720 km2 of an otherwise heavily sedimented axial valley. The western volcano coincides with the average location of epicentres for more than 250 teleseismic events detected in 1999, suggesting that an axial eruption was imaged shortly after its occurrence. These findings demonstrate that eruptions along the ultraslow-spreading Gakkel ridge are focused at discrete locations and appear to be more voluminous and occur more frequently than was previously thought.  相似文献   

5.
Sarda P  Guillot B 《Nature》2005,436(7047):95-98
Degassing of the Earth is still poorly understood, as is the large scatter in He/Ar ratios observed in mid-ocean ridge basalts. A possible explanation for such observations is that vesiculation occurs at great depths with noble-gas solubilities different from those measured at 1 bar (ref. 1). Here we develop a hard-sphere model for noble-gas solubility and find that, owing to melt compaction, solubility may decrease by several orders of magnitude when pressure increases, an effect subtly overbalanced by the compression of the fluid phase. Our results satisfactorily explain recent experimental data on argon solubility in silicate melts, where argon concentration increases almost linearly with pressure, then levels off at pressures of 50-100 kbar (refs 2-5). We also model vesiculation during magma ascent at ridges and find that noble-gas partitioning between melt and CO2 vesicles at depth differs significantly from that at low pressure. Starting at 10 kbar (approximately 35 km depth), several stages of vesiculation occur followed by vesicle loss, which explains the broad variability of He-Ar concentration data in mid-ocean ridge basalts. 'Popping rocks', exceptional samples with high vesicularity, may represent fully vesiculated ridge magma, whereas common samples would simply have lost such vesicles.  相似文献   

6.
利用有限差分数值模拟方法, 恢复洋中脊地形的形成过程, 模型中岩浆供给按一定的时间周期和幅度规律性地变化。结果表明: 只有当岩浆供给变化周期的时间尺度大于在洋中脊同一侧形成两条断层的时间间隔时, 才能影响海底地形的形成过程并被记录。结合数值模拟实验结果和不同类型洋中脊的地形特征, 认为快速扩张洋中脊是唯一可能在地形上记录到米兰科维奇气候周期(偏心率(100 ka)、倾斜度(41 ka)和岁差(23 ka)) 3个时间尺度岩浆变化周期的洋中脊类型, 中速扩张洋中脊和部分岩浆供给充足慢速扩张洋中脊的地形可能与100 ka尺度的岩浆供给变化周期有关, 大部分慢速扩张洋中脊海底地形不受100 ka及以下的岩浆供给变化周期影响。  相似文献   

7.
The Gakkel ridge, which extends under the Arctic ice cap for approximately 1,800 km, is the slowest spreading ocean ridge on Earth. Its spreading created the Eurasian basin, which is isolated from the rest of the oceanic mantle by North America, Eurasia and the Lomonosov ridge. The Gakkel ridge thus provides unique opportunities to investigate the composition of the sub-Arctic mantle and mantle heterogeneity and melting at the lower limits of seafloor spreading. The first results of the 2001 Arctic Mid-Ocean Ridge Expedition (ref. 1) divided the Gakkel ridge into three tectonic segments, composed of robust western and eastern volcanic zones separated by a 'sparsely magmatic zone'. On the basis of Sr-Nd-Pb isotope ratios and trace elements in basalts from the spreading axis, we show that the sparsely magmatic zone contains an abrupt mantle compositional boundary. Basalts to the west of the boundary display affinities to the Southern Hemisphere 'Dupal' isotopic province, whereas those to the east-closest to the Eurasian continent and where the spreading rate is slowest-display affinities to 'Northern Hemisphere' ridges. The western zone is the only known spreading ridge outside the Southern Hemisphere that samples a significant upper-mantle region with Dupal-like characteristics. Although the cause of Dupal mantle has been long debated, we show that the source of this signature beneath the western Gakkel ridge was subcontinental lithospheric mantle that delaminated and became integrated into the convecting Arctic asthenosphere. This occurred as North Atlantic mantle propagated north into the Arctic during the separation of Svalbard and Greenland.  相似文献   

8.
The importance of water to oceanic mantle melting regimes   总被引:3,自引:0,他引:3  
Asimow PD  Langmuir CH 《Nature》2003,421(6925):815-820
The formation of basaltic crust at mid-ocean ridges and ocean islands provides a window into the compositional and thermal state of the Earth's upper mantle. But the interpretation of geochemical and crustal-thickness data in terms of magma source parameters depends on our understanding of the melting, melt-extraction and differentiation processes that intervene between the magma source and the crust. Much of the quantitative theory developed to model these processes has neglected the role of water in the mantle and in magma, despite the observed presence of water in ocean-floor basalts. Here we extend two quantitative models of ridge melting, mixing and fractionation to show that the addition of water can cause an increase in total melt production and crustal thickness while causing a decrease in mean extent of melting. This may help to resolve several enigmatic observations in the major- and trace-element chemistry of both normal and hotspot-affected ridge basalts.  相似文献   

9.
The dynamics of melt and shear localization in partially molten aggregates   总被引:2,自引:0,他引:2  
Katz RF  Spiegelman M  Holtzman B 《Nature》2006,442(7103):676-679
The volcanoes that lie along the Earth's tectonic boundaries are fed by melt generated in the mantle. How this melt is extracted and focused to the volcanoes, however, remains an unresolved question. Here we present new theoretical results with implications for melt focusing beneath mid-ocean ridges. By modelling laboratory experiments, we test a formulation for magma dynamics and provide an explanation for localized bands of high-porosity and concentrated shear deformation observed in experiments. These bands emerge and persist at 15 degrees-25 degrees to the plane of shear. Past theoretical work on this system predicted the emergence of melt bands but at an angle inconsistent with experiments. Our results suggest that the observed band angle results from a balance of porosity-weakening and strain-rate-weakening deformation mechanisms. Lower band angles are predicted for greater strain-rate weakening. From these lower band angles, we estimate the orientation of melt bands beneath mid-ocean ridges and show that they may enhance magma focusing toward the ridge axis.  相似文献   

10.
Carbotte SM  Small C  Donnelly K 《Nature》2004,429(6993):743-746
The Earth's mid-ocean ridges display systematic changes in depth and shape, which subdivide the ridges into discrete spreading segments bounded by transform faults and smaller non-transform offsets of the axis. These morphological changes have been attributed to spatial variations in the supply of magma from the mantle, although the origin of the variations is poorly understood. Here we show that magmatic segmentation of ridges with fast and intermediate spreading rates is directly related to the migration velocity of the spreading axis over the mantle. For over 9,500 km of mid-ocean ridge examined, leading ridge segments in the 'hotspot' reference frame coincide with the shallow magmatically robust segments across 86 per cent of all transform faults and 73 per cent of all second-order discontinuities. We attribute this relationship to asymmetric mantle upwelling and melt production due to ridge migration, with focusing of melt towards ridge segments across discontinuities. The model is consistent with variations in crustal structure across discontinuities of the East Pacific Rise, and may explain variations in depth of melting and the distribution of enriched lavas.  相似文献   

11.
The Earth's oceanic crust crystallizes from magmatic systems generated at mid-ocean ridges. Whereas a single magma body residing within the mid-crust is thought to be responsible for the generation of the upper oceanic crust, it remains unclear if the lower crust is formed from the same magma body, or if it mainly crystallizes from magma lenses located at the base of the crust. Thermal modelling, tomography, compliance and wide-angle seismic studies, supported by geological evidence, suggest the presence of gabbroic-melt accumulations within the Moho transition zone in the vicinity of fast- to intermediate-spreading centres. Until now, however, no reflection images have been obtained of such a structure within the Moho transition zone. Here we show images of groups of Moho transition zone reflection events that resulted from the analysis of approximately 1,500 km of multichannel seismic data collected across the intermediate-spreading-rate Juan de Fuca ridge. From our observations we suggest that gabbro lenses and melt accumulations embedded within dunite or residual mantle peridotite are the most probable cause for the observed reflectivity, thus providing support for the hypothesis that the crust is generated from multiple magma bodies.  相似文献   

12.
Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean   总被引:2,自引:0,他引:2  
The Earth's mantle beneath ocean ridges is widely thought to be depleted by previous melt extraction, but well homogenized by convective stirring. This inference of homogeneity has been complicated by the occurrence of portions enriched in incompatible elements. Here we show that some refractory abyssal peridotites from the ultraslow-spreading Gakkel ridge (Arctic Ocean) have very depleted 187Os/188Os ratios with model ages up to 2 billion years, implying the long-term preservation of refractory domains in the asthenospheric mantle rather than their erasure by mantle convection. The refractory domains would not be sampled by mid-ocean-ridge basalts because they contribute little to the genesis of magmas. We thus suggest that the upwelling mantle beneath mid-ocean ridges is highly heterogeneous, which makes it difficult to constrain its composition by mid-ocean-ridge basalts alone. Furthermore, the existence of ancient domains in oceanic mantle suggests that using osmium model ages to constrain the evolution of continental lithosphere should be approached with caution.  相似文献   

13.
Three-quarters of the Earth's volcanic activity is submarine, located mostly along the mid-ocean ridges, with the remainder along intraoceanic arcs and hotspots at depths varying from greater than 4,000 m to near the sea surface. Most observations and sampling of submarine eruptions have been indirect, made from surface vessels or made after the fact. We describe here direct observations and sampling of an eruption at a submarine arc volcano named NW Rota-1, located 60 km northwest of the island of Rota (Commonwealth of the Northern Mariana Islands). We observed a pulsating plume permeated with droplets of molten sulphur disgorging volcanic ash and lapilli from a 15-m diameter pit in March 2004 and again in October 2005 near the summit of the volcano at a water depth of 555 m (depth in 2004). A turbid layer found on the flanks of the volcano (in 2004) at depths from 700 m to more than 1,400 m was probably formed by mass-wasting events related to the eruption. Long-term eruptive activity has produced an unusual chemical environment and a very unstable benthic habitat exploited by only a few mobile decapod species. Such conditions are perhaps distinctive of active arc and hotspot volcanoes.  相似文献   

14.
Dunn RA  Martinez F 《Nature》2011,469(7329):198-202
The opening of back-arc basins behind subduction zones progresses from initial rifting near the volcanic arc to seafloor spreading. During this process, the spreading ridge and the volcanic arc separate and lavas erupted at the ridge are predicted to evolve away from being heavily subduction influenced (with high volatile contents derived from the subducting plate). Current models predict gradational, rather than abrupt, changes in the crust formed along the ridge as the inferred broad melting region beneath it migrates away from heavily subduction-influenced mantle. In contrast, here we show that across-strike and along-strike changes in crustal properties at the Eastern Lau spreading centre are large and abrupt, implying correspondingly large discontinuities in the nature of the mantle supplying melt to the ridge axes. With incremental separation of the ridge axis from the volcanic front of as little as 5?km, seafloor morphology changes from shallower complex volcanic landforms to deeper flat sea floor dominated by linear abyssal hills, upper crustal seismic velocities abruptly increase by over 20%, and gravity anomalies and isostasy indicate crustal thinning of more than 1.9?km. We infer that the abrupt changes in crustal properties reflect rapid evolution of the mantle entrained by the ridge, such that stable, broad triangular upwelling regions, as inferred for mid-ocean ridges, cannot form near the mantle wedge corner. Instead, the observations imply a dynamic process in which the ridge upwelling zone preferentially captures water-rich low-viscosity mantle when it is near the arc. As the ridge moves away from the arc, a tipping point is reached at which that material is rapidly released from the upwelling zone, resulting in rapid changes in the character of the crust formed at the ridge.  相似文献   

15.
Johnson HP  Hutnak M  Dziak RP  Fox CG  Urcuyo I  Cowen JP  Nabelek J  Fisher C 《Nature》2000,407(6801):174-177
Hydrothermal vents on mid-ocean ridges of the northeast Pacific Ocean are known to respond to seismic disturbances, with observed changes in vent temperature. But these disturbances resulted from submarine volcanic activity; until now, there have been no observations of the response of a vent system to non-magmatic, tectonic events. Here we report measurements of hydrothermal vent temperature from several vents on the Juan de Fuca ridge in June 1999, before, during and after an earthquake swarm of apparent tectonic origin. Vent fluid temperatures began to rise 4-11 days after the first earthquake. Following this initial increase, the vent temperatures oscillated for about a month before settling down to higher values. We also observed a tenfold increase in fluid output from the hydrothermal system over a period of at least 80 days, extending along the entire ridge segment. Such a large, segment-wide thermal response to relatively modest tectonic activity is surprising, and raises questions about the sources of excess heat and fluid, and the possible effect on vent biological communities.  相似文献   

16.
Lizarralde D  Gaherty JB  Collins JA  Hirth G  Kim SD 《Nature》2004,432(7018):744-747
A variety of observations indicate that mid-ocean ridges produce less crust at spreading rates below 20 mm yr(-1) (refs 1-3), reflecting changes in fundamental ridge processes with decreasing spreading rate. The nature of these changes, however, remains uncertain, with end-member explanations being decreasing shallow melting or incomplete melt extraction, each due to the influence of a thicker thermal lid. Here we present results of a seismic refraction experiment designed to study mid-ocean ridge processes by imaging residual mantle structure. Our results reveal an abrupt lateral change in bulk mantle seismic properties associated with a change from slow to ultraslow palaeo-spreading rate. Changes in mantle velocity gradient, basement topography and crustal thickness all correlate with this spreading-rate change. These observations can be explained by variations in melt extraction at the ridge, with a gabbroic phase preferentially retained in the mantle at slower spreading rates. The estimated volume of retained melt balances the approximately 1.5-km difference in crustal thickness, suggesting that changes in spreading rate affect melt-extraction processes rather than total melting.  相似文献   

17.
Mantle wedge control on back-arc crustal accretion   总被引:1,自引:0,他引:1  
Martinez F  Taylor B 《Nature》2002,416(6879):417-420
At mid-ocean ridges, plate separation leads to upward advection and pressure-release partial melting of fertile mantle material; the melt is then extracted to the spreading centre and the residual depleted mantle flows horizontally away. In back-arc basins, the subducting slab is an important control on the pattern of mantle advection and melt extraction, as well as on compositional and fluid gradients. Modelling studies predict significant mantle wedge effects on back-arc spreading processes. Here we show that various spreading centres in the Lau back-arc basin exhibit enhanced, diminished or normal magma supply, which correlates with distance from the arc volcanic front but not with spreading rate. To explain this correlation we propose that depleted upper-mantle material, generated by melt extraction in the mantle wedge, is overturned and re-introduced beneath the back-arc basin by subduction-induced corner flow. The spreading centres experience enhanced melt delivery near the volcanic front, diminished melting within the overturned depleted mantle farther from the corner and normal melting conditions in undepleted mantle farther away. Our model explains fundamental differences in crustal accretion variables between back-arc and mid-ocean settings.  相似文献   

18.
Abelson M  Baer G  Agnon A 《Nature》2001,409(6816):72-75
The lateral flow of magma and ductile deformation of the lower crust along oceanic spreading axes has been thought to play a significant role in suppressing both mid-ocean ridge segmentation and variations in crustal thickness. Direct investigation of such flow patterns is hampered by the kilometres of water that cover the oceanic crust, but such studies can be made on ophiolites (fragments of oceanic crust accreted to a continent). In the Oman ophiolite, small-scale radial patterns of flow have been mapped along what is thought to be the relict of a fast-spreading mid-ocean ridge. Here we present evidence for broad-scale along-axis flow that has been frozen into the gabbro of the Troodos ophiolite in Cyprus (thought to be representative of a slow-spreading ridge axis). The gabbro suite of Troodos spans nearly 20 km of a segment of a fossil spreading axis, near a ridge-transform intersection. We mapped the pattern of magma flow by analysing the rocks' magnetic fabric at 20 sites widely distributed in the gabbro suite, and by examining the petrographic fabric at 9 sites. We infer an along-axis magma flow for much of the gabbro suite, which indicates that redistribution of melt occurred towards the segment edge in a large depth range of the oceanic crust. Our results support the magma plumbing structure that has been inferred indirectly from a seismic tomography experiment on the slow-spreading Mid-Atlantic Ridge.  相似文献   

19.
Salters VJ  Dick HJ 《Nature》2002,418(6893):68-72
Inferring the melting process at mid-ocean ridges, and the physical conditions under which melting takes place, usually relies on the assumption of compositional similarity between all mid-ocean-ridge basalt sources. Models of mantle melting therefore tend to be restricted to those that consider the presence of only one lithology in the mantle, peridotite. Evidence from xenoliths and peridotite massifs show that after peridotite, pyroxenite and eclogite are the most abundant rock types in the mantle. But at mid-ocean ridges, where most of the melting takes place, and in ophiolites, pyroxenite is rarely found. Here we present neodymium isotopic compositions of abyssal peridotites to investigate whether peridotite can indeed be the sole source for mid-ocean-ridge basalts. By comparing the isotopic compositions of basalts and peridotites at two segments of the southwest Indian ridge, we show that a component other than peridotite is required to explain the low end of the (143)Nd/(144)Nd variations of the basalts. This component is likely to have a lower melting temperature than peridotite, such as pyroxenite or eclogite, which could explain why it is not observed at mid-ocean ridges.  相似文献   

20.
Toomey DR  Jousselin D  Dunn RA  Wilcock WS  Detrick RS 《Nature》2007,446(7134):409-414
Mantle upwelling is essential to the generation of new oceanic crust at mid-ocean ridges, and it is generally assumed that such upwelling is symmetric beneath active ridges. Here, however, we use seismic imaging to show that the isotropic and anisotropic structure of the mantle is rotated beneath the East Pacific Rise. The isotropic structure defines the pattern of magma delivery from the mantle to the crust. We find that the segmentation of the rise crest between transform faults correlates well with the distribution of mantle melt. The azimuth of seismic anisotropy constrains the direction of mantle flow, which is rotated nearly 10 degrees anticlockwise from the plate-spreading direction. The mismatch between the locus of mantle melt delivery and the morphologic ridge axis results in systematic differences between areas of on-axis and off-axis melt supply. We conclude that the skew of asthenospheric upwelling and transport governs segmentation of the East Pacific Rise and variations in the intensity of ridge crest processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号