首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
研究电子隧穿单方势垒所产生的电子-空穴纠缠特性.依赖于能级的配置,协力纠缠度(concrufence)随势垒高度变化呈有趣的演化特征.  相似文献   

2.
利用部分纠缠的两粒子纠缠态及部分纠缠的三粒子W态作为量子信道,提出了对任意的两粒子态的概率隐形传态方案,其最大传输概率为2/3.  相似文献   

3.
量子纠缠和量子操作   总被引:1,自引:0,他引:1  
对量子纠缠和量子操作作了介绍, 考察了两比特量子纠缠态和量子操作的应用及它们之间的关系. 具体包括: 用非最大纠缠纯态来实现任意量子态的确定性远程制备; 用纠缠态来实现用于分布式量子计算的非定域门操作; 讨论了量子操作的纠缠能力; 讨论了两量子比特门的构造. 这些结果有助于理解量子纠缠和量子操作这些量子信息处理中的资源.  相似文献   

4.
对量子纠缠和量子操作作了介绍, 考察了两比特量子纠缠态和量子操作的应用及它们之间的关系. 具体包括: 用非最大纠缠纯态来实现任意量子态的确定性远程制备; 用纠缠态来实现用于分布式量子计算的非定域门操作; 讨论了量子操作的纠缠能力; 讨论了两量子比特门的构造. 这些结果有助于理解量子纠缠和量子操作这些量子信息处理中的资源.  相似文献   

5.
给出了两体纠缠态的性质与产生方法,用正规乘积技术得到了两体与三体连续变量纠缠态在坐标表象下的分解形式,展现了它们的完全性与正交归一性,提出了用三个两体纠缠态作为通道传榆一种连续变量三体纠缠态的方案.  相似文献   

6.
量子计算和量子通信是量子信息科学的两个重要组成部分.量子算法通常用到实系数等权重纯态,其中重要的一类是图态,图态的纠缠已经得到系统的研究.量子通信中不可避免地要用量子纠错码,其中最广泛使用的是与图态紧密相关的量子稳定子码,可以看作是由图态与经典编码两个要素构成的.本文将论证量子编码复杂度与量子码字纠缠的关系.为研究量子码字的纠缠,将证明几何测度、对数鲁棒纠缠和相对熵纠缠等纠缠测度对于量子稳定子码字而言是相等的,纠缠的上下界可由量子编码的生成元确定.用经典编码可以构造一类量子码,称为CSS码.其中最常用的是对偶包含法.对于CSS对偶包含码的码字,证明它的纠缠等于其经典生成元的个数.本文给出Gottesman码以及相关码的纠缠公式,还发展了迭代算法用来数值计算纠缠量.  相似文献   

7.
刘燕勇  刘志勇 《江西科学》2008,26(6):863-866
本文从研究初态为一般纠缠态的两个异模光子与初态为一般叠加态的二能级原子的相互作用着手,对得到的三体纠缠态的纠缠度进行了分析,并进一步讨论了系统初态为某些特殊状态时的纠缠演化。最终都得出了简明的演化公式,并且在某些特殊状态时发现系统将演化成三体GHZ态。  相似文献   

8.
提出一个对未知三原子纠缠态辅助克隆的腔QED方案.该方案包括两个阶段,首先用两个两原子纠缠态和一个三原子纠缠态作为量子信道实现对未知三原子纠缠态的受控隐形传态,其次,在态制备者的帮助下,信息发送方实现对未知三原子纠缠态的辅助克隆.  相似文献   

9.
在二能级原子静止和运动的情况下,研究了原子与双模压缩真空态量子化腔场共振拉曼过程中的纠缠特性,利用量子化熵和量子相对熵分别讨论了原子与双模光场之间以及双模光场两模之间的纠缠性质.研究发现:通过适当改变场模参量和原子初态可以控制纠缠的时间和纠缠强度演化.  相似文献   

10.
双势垒中杂质原子对量子隧穿的影响   总被引:1,自引:1,他引:0  
采用计算穿越任意势之透射系数的数值计算方法,得到了在双势垒阱区中有正电杂质时电子隧穿的共振能级、波函数、透射系数.通过与无杂质原子的双势垒量子隧穿情形对比,详细讨论了杂质原子对量子隧穿的影响.数值结果显示,体系的有效势是双势垒与杂质原子库仑势的叠加,当电子能量处于叠加势中的本征能级时,发生共振隧穿,对纯束缚态,不可能发生共振隧穿.此外,还给出势阱中有、无杂质两种情形的波形图,通过对比,可以进一步看出杂质原子对共振隧穿的影响.  相似文献   

11.
H Arakawa  K Umemura  A Ikai 《Nature》1992,358(6382):171-173
Scanning tunnelling microscopy and atomic force microscopy, one scanning the tunnelling current and the other the repulsive atomic force between same and probe, can give high-quality surface topographies of proteins, which have been difficult to obtain by more conventional methods such as transmission electron microscopy.  相似文献   

12.
Attosecond real-time observation of electron tunnelling in atoms   总被引:3,自引:0,他引:3  
Atoms exposed to intense light lose one or more electrons and become ions. In strong fields, the process is predicted to occur via tunnelling through the binding potential that is suppressed by the light field near the peaks of its oscillations. Here we report the real-time observation of this most elementary step in strong-field interactions: light-induced electron tunnelling. The process is found to deplete atomic bound states in sharp steps lasting several hundred attoseconds. This suggests a new technique, attosecond tunnelling, for probing short-lived, transient states of atoms or molecules with high temporal resolution. The utility of attosecond tunnelling is demonstrated by capturing multi-electron excitation (shake-up) and relaxation (cascaded Auger decay) processes with subfemtosecond resolution.  相似文献   

13.
Fishlock TW  Oral A  Egdell RG  Pethica JB 《Nature》2000,404(6779):743-745
Since the realization that the tips of scanning probe microscopes can interact with atoms at surfaces, there has been much interest in the possibility of building or modifying nanostructures or molecules directly from single atoms. Individual large molecules can be positioned on surfaces, and atoms can be transferred controllably between the sample and probe tip. The most complex structures are produced at cryogenic temperatures by sliding atoms across a surface to chosen sites. But there are problems in manipulating atoms laterally at higher temperatures--atoms that are sufficiently well bound to a surface to be stable at higher temperatures require a stronger tip interaction to be moved. This situation differs significantly from the idealized weakly interacting tips of scanning tunnelling or atomic force microscopes. Here we demonstrate that precise positioning of atoms on a copper surface is possible at room temperature. The triggering mechanism for the atomic motion unexpectedly depends on the tunnelling current density, rather than the electric field or proximity of tip and surface.  相似文献   

14.
Carbotte JP  Schachinger E  Basov DN 《Nature》1999,401(6751):354-356
In conventional superconductors, the most direct evidence of the mechanism responsible for superconductivity comes from tunnelling experiments, which provide a clear picture of the underlying electron-phonon interactions. As the coherence length in conventional superconductors is large, the tunnelling process probes several atomic layers into the bulk of the material; the observed structure in the current-voltage characteristics at the phonon energies gives, through inversion of the Eliashberg equations, the electron-phonon spectral density alpha2F(omega). The situation is different for the high-temperature copper oxide superconductors, where the coherence length (particularly for c-axis tunnelling) can be very short. Because of this, methods such as optical spectroscopy and neutron scattering provide a better route for investigating the underlying mechanism, as they probe bulk properties. Accurate reflection measurements at infrared wavelengths and precise polarized neutron-scattering data are now available for a variety of the copper oxides, and here we show that the conducting carriers (probed by infrared spectroscopy) are strongly coupled to a resonance structure in the spectrum of spin fluctuations (measured by neutron scattering). The coupling strength inferred from those results is sufficient to account for the high transition temperatures of the copper oxides, highlighting a prominent role for spin fluctuations in driving superconductivity in these materials.  相似文献   

15.
Vortices occur naturally in a wide range of gases and fluids, from macroscopic to microscopic scales. In Bose-Einstein condensates of dilute atomic gases, superfluid helium and superconductors, the existence of vortices is a consequence of the quantum nature of the system. Quantized vortices of supercurrent are generated by magnetic flux penetrating the material, and play a key role in determining the material properties and the performance of superconductor-based devices. At high temperatures the dynamics of such vortices are essentially classical, while at low temperatures previous experiments have suggested collective quantum dynamics. However, the question of whether vortex tunnelling occurs at low temperatures has been addressed only for large collections of vortices. Here we study the quantum dynamics of an individual vortex in a superconducting Josephson junction. By measuring the statistics of the vortex escape from a controllable pinning potential, we demonstrate the existence of quantized levels of the vortex energy within the trapping potential well and quantum tunnelling of the vortex through the pinning barrier.  相似文献   

16.
对于处于纠缠态的2个原子与双模压缩光场的相互作用,研究了原子与光场之间以及双模光场中2模之间的纠缠性质.令2个原子中的一个留在腔外,另一个进入腔中与光场发生相互作用,发现一般情况下纠缠度随时间周期性地变化,并且周期不受腔外原子的旋转角度以及纠缠态中相位差的影响;但当光场态中的压缩参量与腔外原子的旋转角度满足一定关系时,原子与光场会一直处于解纠缠状态.  相似文献   

17.
Page CC  Moser CC  Chen X  Dutton PL 《Nature》1999,402(6757):47-52
We have surveyed proteins with known atomic structure whose function involves electron transfer; in these, electrons can travel up to 14 A between redox centres through the protein medium. Transfer over longer distances always involves a chain of cofactors. This redox centre proximity alone is sufficient to allow tunnelling of electrons at rates far faster than the substrate redox reactions it supports. Consequently, there has been no necessity for proteins to evolve optimized routes between redox centres. Instead, simple geometry enables rapid tunnelling to high-energy intermediate states. This greatly simplifies any analysis of redox protein mechanisms and challenges the need to postulate mechanisms of superexchange through redox centres or the maintenance of charge neutrality when investigating electron-transfer reactions. Such tunnelling also allows sequential electron transfer in catalytic sites to surmount radical transition states without involving the movement of hydride ions, as is generally assumed. The 14 A or less spacing of redox centres provides highly robust engineering for electron transfer, and may reflect selection against designs that have proved more vulnerable to mutations during the course of evolution.  相似文献   

18.
Bobrov K  Mayne AJ  Dujardin G 《Nature》2001,413(6856):616-619
The electronic properties of insulators such as diamond are of interest not only for their passive dielectric capabilities for use in electronic devices, but also for their strong electron confinement on atomic scales. However, the inherent lack of electrical conductivity in insulators usually prevents the investigation of their surfaces by atomic-scale characterization techniques such as scanning tunnelling microscopy (STM). And although atomic force microscopy could in principle be used, imaging diamond surfaces has not yet been possible. Here, we demonstrate that STM can be used in an unconventional resonant electron injection mode to image insulating diamond surfaces and to probe their electronic properties at the atomic scale. Our results reveal striking electronic features in high-purity diamond single crystals, such as the existence of one-dimensional fully delocalized electronic states and a very long diffusion length for conduction-band electrons. We expect that our method can be applied to investigate the electronic properties of other insulating materials and so help in the design of atomic-scale electronic devices.  相似文献   

19.
The tunnelling of a particle through a barrier is one of the most fundamental and ubiquitous quantum processes. When induced by an intense laser field, electron tunnelling from atoms and molecules initiates a broad range of phenomena such as the generation of attosecond pulses, laser-induced electron diffraction and holography. These processes evolve on the attosecond timescale (1?attosecond?≡?1?as = 10(-18)?seconds) and are well suited to the investigation of a general issue much debated since the early days of quantum mechanics--the link between the tunnelling of an electron through a barrier and its dynamics outside the barrier. Previous experiments have measured tunnelling rates with attosecond time resolution and tunnelling delay times. Here we study laser-induced tunnelling by using a weak probe field to steer the tunnelled electron in the lateral direction and then monitor the effect on the attosecond light bursts emitted when the liberated electron re-encounters the parent ion. We show that this approach allows us to measure the time at which the electron exits from the tunnelling barrier. We demonstrate the high sensitivity of the measurement by detecting subtle delays in ionization times from two orbitals of a carbon dioxide molecule. Measurement of the tunnelling process is essential for all attosecond experiments where strong-field ionization initiates ultrafast dynamics. Our approach provides a general tool for time-resolving multi-electron rearrangements in atoms and molecules--one of the key challenges in ultrafast science.  相似文献   

20.
Images of single-stranded nucleic acids by scanning tunnelling microscopy   总被引:5,自引:0,他引:5  
D D Dunlap  C Bustamante 《Nature》1989,342(6246):204-206
The scanning tunnelling microscope has the potential to resolve the structure of biological molecules with atomic detail. Progress has been made in the imaging of dried, unshadowed double helices of DNA4-7 and in recording images of DNA under water. Also, images of unshadowed complexes of DNA with the RecA protein from Escherichia coli indicate that this technique may not be restricted to thin biological samples. Here we present images of polydeoxyadenylate molecules aligned in parallel, with their bases lying flat on a surface of highly oriented pyrolytic graphite and with their charged phosphodiester backbones protruding upwards. Based on these images, a molecular model has been built which suggests the presence of a hydrogen bond that could stabilize the parallel alignment. Our micrographs demonstrate the potential application of scanning tunnelling microscopy in structural studies of nucleic acids and provide evidence that it could be used to sequence DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号