首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用量子力学和分子力学相结合的ONIOM(B3LYP/6-31+g(d,p)∶UFF)方法,研究SWCNT((8,8),(7,7),(6,6))内的布洛芬(IBU)分子结构和手性转变机理,在ONIOM(B3LYP/6-311++g(2df,pd)∶UFF)水平计算单点能.分子结构研究表明:与单体IBU分子相比,受限于SWCNT(6,6)时,羧基C与它的两个O的键长,羧基C与手性C的键长明显减小,导致手性C和羰基O以及羧基两个O的间距明显缩短.随着管径的增加,IBU分子结构变化变得不明显.手性转变反应通道研究表明:在SWCNT(8,8)内存在两个反应通道,一是手性碳上的氢直接以羰基氧为桥梁转移到手性碳的另一侧;二是氢先在羧基内转移,从羟基转移到羰基,而后手性碳上的氢再以羰基氧为桥梁转移到手性碳的另一侧.在SWCNT(7,7)和SWCNT(6,6)内只存在第二通道.反应势能面计算发现:IBU分子在SWCNT(6,6)内,羧基内氢转移和氢从手性碳转移到羰基的能垒明显降低,从单体的143.9和306.4kJ·mol-1分别降到123.3和246.3kJ·mol-1;在SWCNT(7,7)内降低的幅度次之,在SWCNT(8,8)内降低幅度很小.结果表明:IBU限域在SWCNT内时的氢转移反应能垒随管径减小而降低.  相似文献   

2.
采用量子力学与分子力学组合的ONIOM方法,研究了限域在几种不同尺寸的扶手椅型单壁碳纳米管内赖氨酸分子的手性转变机理.结构分析表明:随着纳米管管径的减小,限域其中的赖氨酸分子构型的形变越来越明显,骨架碳原子间的键角明显增大;手性碳上的H与氨基N的距离逐渐变小.反应通道研究发现:标题反应在不同尺寸的纳米管内具有不同的通道,在SWCNT(5,5),SWCNT(6,6)和SWCNT(7,7)分别具有1个、4个和3个反应通道.势能面计算表明,赖氨酸限域在SWCNT(5,5)时,手性转变的吉布斯自由能垒被降到最低值192.8kJ·mol-1,是由手性碳上的质子向氨基氮和氨基上的质子向羰基氧双质子协同迁移的过渡态产生的.与裸反应的此通道决速步能垒252.6kJ·mol-1相比较有显著降低.结果表明:SWCNT(5,5)对赖氨酸的手性转变反应具有较好的限域催化作用,可作为实现赖氨酸旋光异构的纳米反应器.  相似文献   

3.
用量子力学与分子力学组合的ONIOM方法, 考察布洛芬(Ibu)分子限域在螺旋手性单壁碳纳米管(SWCNT)内的手性转变机理. 结果表明: 螺旋手性单壁碳纳米管的直径越小, 限域在其孔道内的布洛芬分子形变越明显; 布洛芬分子在SWCNT(6,4)和SWCNT(7,4)内的旋光异构只有一个反应通道, 在SWCNT(8,5)内的旋光异构有两个反应通道; 布洛芬分子限域在SWCNT(6,4),SWCNT(7,4)和SWCNT(8,5)内时, 旋光异构反应决速步骤的内禀能垒分别为24795,27383,29224 kJ/mol, 总包能垒分别为27896,29191,32588 kJ/mol. 可见S-Ibu的旋光异构易在较小孔径的螺旋手性SWCNT内实现, SWCNT(6,4)可以作为布洛芬分子旋光异构的纳米反应器.  相似文献   

4.
采用巨正则蒙特卡罗方法,研究了锂掺杂对单壁氮化硼纳米管阵列(SWBNNTA-SingleWalled Boron Nitride Nanotube Array)物理吸附储氢的影响.揭示了锂掺杂是提高SWBNNTA储氢能力的有效手段,并给出了最佳的掺杂方案.计算结果表明,选择最佳的掺杂方案,并合理控制SWBNNTA的结构与尺寸,可使锂掺杂SWBNNTA在常温、中等压强下的物理吸附储氢量达到和超过美国能源部提出的2015年研究目标.  相似文献   

5.
采用蒙特卡罗方法模拟常温、中等压强下单壁氮化硼纳米管的储氢,重点研究了单壁氮化硼纳米管的管径、管长和手性以及压强对其物理吸附储氢的影响.与单壁碳纳米管的物理吸附储氢相比较,氮化硼纳米管的储氢性能明显优于碳纳米管.计算结果显示,在常温、中等压强下单壁氮化硼纳米管的物理吸附储氢量(质量百分数)可以达到美国能源部提出的商业标准.  相似文献   

6.
利用非共振情况下的键极化模型理论,对单壁氮化硼纳米管的拉曼光谱强度进行研究.考察氮化硼纳米管结构、入射光和散射光的偏振方向以及管轴的取向对散射光强度的影响.计算结果表明:光的偏振方向对拉曼散射强度影响较大,而手性对拉曼光谱的影响较小.针对氮化硼纳米管样品的实际情况,给出无规取向氮化硼纳米管的拉曼散射强度.  相似文献   

7.
以Na BH4为硼源,以NH4Cl为氮源,以单壁碳纳米管为模板,利用自制的不锈钢高压反应釜制备氮化硼纳米管,采用X射线衍射仪、扫描电子显微镜、X射线能谱仪及透射电子显微镜等手段对制备的氮化硼纳米管进行一系列微观形貌及物相分析。结果表明,制备的氮化硼纳米管在电镜下中空管状结构明显,直径约20 nm,粗细均匀,纯度较高,形貌良好。  相似文献   

8.
9.
用量子力学与分子力学组合的ONIOM方法结合自洽反应场(SCRF)理论的smd模型方法,对标题反应进行理论研究.研究发现:水环境下限域在MOR分子筛内的α-丙氨酸可以在3个反应通道实现旋光异构,分别是质子α-氢以氨基氮、顺次以羰基氧与氨基氮和只以羰基氧为桥,从α-碳的一侧迁移到另一侧.计算表明:质子以氨基氮为桥转移的通道具有绝对优势,α-氢从α-碳向氨基氮的迁移是决速步骤;水溶剂环境下2个和3个水分子簇做α-氢迁移媒介以及分子筛的限域作用,使决速步的吉布斯自由能垒从裸反应的266.1kJ·mol~(-1)降为116.1和111.2kJ·mol~(-1),也比只在水环境下的138.6和122.5kJ·mol~(-1)显著降低.结果表明:水环境下MOR分子筛对α-丙氨酸的旋光异构具有较好的限域助催化作用,水与MOR分子筛的复合环境可作为α-丙氨酸旋光异构反应的纳米反应器.  相似文献   

10.
用量子化学ONIOM(B3LYP/6-31++g*:UFF)方法,考察扶椅型单壁碳纳米管SWCNT(5,5),(6,6),(7,7)、锯齿型SWCNT(9,0),(10,0),(11,0)和螺旋型SWCNT(8,2),(8,3),(8,4),(9,1),(9,2),(9,3)中的α-Ala分子结构和手性转变机制.结果表明:与单体相比,当α-Ala分子限域在直径小的SWCNT中时,其C—C—C键角、C—C—N—C二面角和H—N—H键角增加较大,其他结构参数值略有增减;只存在H先在羧基内转移,手性碳上的H再以羰基11O为桥梁转移的反应通道;当α-Ala分子限域在SWCNT(5,5),(9,0),(8,2),(9,1)中时,羧基内H转移和H从手性碳转移到羰基的能垒较低;α-Ala分子限域在SWCNT中的H转移反应能垒随管径的减小而降低;不同手性的SWCNT对H转移反应能垒影响较小.  相似文献   

11.
用量子力学与分子力学组合的ONIOM方法,结合自洽反应场的SMD(slovation model density)模型方法,对水环境下单臂碳纳米管(SWCNT)内缬氨酸的旋光异构及羟自由基致损伤机理进行了研究.势能面计算表明:以2个水分子簇作传递质子媒介,氨基氮作质子迁移桥梁时,缬氨酸限域在SWCNT(8,8)和SWCNT(7,7)内旋光异构的决速步能垒分别是115.80和165.64kJ/mol,水溶剂效应使这2个能垒降到104.34和150.07kJ/mol.限域在SWCNT(8,8)内的缬氨酸,羟自由基抽氢致其损伤的能垒是13.31kJ/mol,水分子辅助羟自由基抽氢致其损伤的能垒约15.00kJ/mol,水溶剂效应使它们相应地上升至18.85和约20.00kJ/mol.结果表明:SWCNT(8,8)和SWCNT(7,7)的限域对水环境下缬氨酸的旋光异构分别具有正催化和负催化作用,水溶剂具有助催化作用;SWCNT(8,8)的限域对水环境下羟自由基致缬氨酸损伤具有显著的催化作用,水溶剂则会阻碍羟自由基致缬氨酸损伤.  相似文献   

12.
介绍了带半-B12N12帽的armchair型单壁氮化硼纳米管(BN-SWNT),并对其Kekule结构的个数进行了计算,通过使用定位配置技术和特殊的编码方法,建立了关于Kekule计数K的递推公式.数值计算结果表明,与zigzag型类似,armchair型氮化硼纳米管的Kekule计数也随着管子中间层数的增加呈指数增长。  相似文献   

13.
介绍了带半-B12N12帽的armchair型单壁氮化硼纳米管(BN-SWNT),并对其Kekule结构的个数进行了计算.通过使用定位配置技术和特殊的编码方法,建立了关于Kekule计数K的递推公式.数值计算结果表明,与zigzag型类似,armchair型氮化硼纳米管的Kekule计数也随着管子中间层数的增加呈指数增长.  相似文献   

14.
采用量子力学与分子力学组合的ONIOM方法, 研究限域在扶手椅型单壁氮化硼纳米管(SWBNNT)内赖氨酸(Lys)分子手性转变的反应机理. 采用原子中心密度矩阵传播(ADMP)分子动力学方法, 研究Lys分子在SWBNNT(5,5)内手性转变反应通道入口与出口势能面上的动态反应路径, 给出中间体和产物的微观动态反应图像. 结果表明: 随着纳米管管径的减小, 限域其中的Lys分子骨架C原子间的键角明显增大; 手性C上的H与氨基N的距离逐渐变小; 在SWBNNT(5,5)内, 通过2个基元反应Lys分子实现了手性转变; 在SWBNNT(6,6)和SWBNNT(7,7)内, 通过3个和4个基元反应Lys分子实现了手性转变 ; 在SWBNNT(5,5)内, Lys分子手性转变反应决速步骤自由能垒降为最低值190.1 kJ/mol. 在 SWBNNT(7,7)内, 决速步骤能垒与裸反应基本相同.  相似文献   

15.
利用量子统计理论的多体格林函数方法计算了单壁磁性纳米管的自旋波的色散关系.Armchair型纳米管的自旋波谱只有一支,这一支有int(m/2+1)条色散曲线.当q1a+q2a=2π时,自旋波能量是简并的.当纳米管的管径m(亦即圆周方向上的格点数)一定时,自旋波能量曲线随温度的升高而降低.Zigzag型磁纳米管的自旋波谱分为两支:ω1支和ω2支.每一支都有m条色散曲线.当q1b+q2b=π时,自旋波能量是简并的.自旋波能量简并在物理上是由对称性所致.  相似文献   

16.
采用量子力学与分子力学组合的ONIOM方法,研究限域在扶手椅型单壁氮化硼纳米管(SWBNNT)内赖氨酸(Lys)分子手性转变的反应机理.采用原子中心密度矩阵传播(ADMP)分子动力学方法,研究Lys分子在SWBNNT(5,5)内手性转变反应通道入口与出口势能面上的动态反应路径,给出中间体和产物的微观动态反应图像.结果表明:随着纳米管管径的减小,限域其中的Lys分子骨架C原子间的键角明显增大;手性C上的H与氨基N的距离逐渐变小;在SWBNNT(5,5)内,通过2个基元反应Lys分子实现了手性转变;在SWBNNT(6,6)和SWBNNT(7,7)内,通过3个和4个基元反应Lys分子实现了手性转变;在SWBNNT(5,5)内,Lys分子手性转变反应决速步骤自由能垒降为最低值190.1kJ/mol.在SWBNNT(7,7)内,决速步骤能垒与裸反应基本相同.  相似文献   

17.
基于MP2/6-311++G(2df,pd)//B3LYP/6-31+G(d,p)双理论水平, 用自洽反应场(SCRF)理论的SMD模型方法, 考察水环境下氢氧根水分子簇催化缬氨酸旋光异构及羟自由基致其损伤机理. 结果表明: 缬氨酸的旋光异构可在2个通道a和b实现, 通道a为氢氧根水分子簇与α-H和氨基通过氢键作用形成底物, 氢氧根抽取α-H后, α-C在另一侧抽取水分子的H; 通道b为氢氧根水分子簇与α-H和羰基通过氢键作用形成底物, 氢氧根抽取α-H后, α-C在另一侧抽取水分子的H, 通道b中的水分子辅助羟自由基抽取α-H可致缬氨酸损伤; 水液相环境下, 构象Val-1(氨基羧基间为单氢键)和构象Val-2(氨基羧基间为双氢键)在通道a旋光异构的决速步骤能垒分别为60.57,65.24 kJ/mol, 在通道b旋光异构的决速步骤能垒分别为56.76,64.11 kJ/mol, 羟自由基水分子簇致缬氨酸在通道b的损伤为温和的放热反应.  相似文献   

18.
在考虑曲率效应对扶手椅型碳纳米管(SWNt)最近邻碳原子交叠积分影响的情况下,利用紧束缚模型和玻恩-卡门边界条件解析地推导扶手椅型SWNT的能带、态密度和电子公有化运动速度.对扶手椅型SWNT电子性质的分析发现:考虑曲率效应后扶手椅型SWNT仍然是金属管,但其能带的总能减小,其态密度的导电平台变窄且其电子公有化运动速度变小.  相似文献   

19.
用AM1方法研究了(3,3)、(4,4)、(5,5)和(6,6)扶手椅型单壁碳纳米管(ASWCNTs)以及其氮烯环加成异构体的结构和性质,并重点讨论了这些异构体之间的转化关系.POAV分析表明,扶手椅型单壁碳纳米管的直径越大,张力就越小,“一“共轭作用也越强.  相似文献   

20.
本文采用密度泛函理论计算研究了氢化/氟化BN纳米管的自发磁化现象.研究结果表明:单个H原子/F原子倾向于吸附在B位,且均能够诱导自发磁化.两个H原子/F原子吸附在B位上时也可以使体系发生自发磁化,而具有磁性的氢化BN纳米管是一种亚稳结构.与此相反,具有磁性的氟化BN纳米管是稳定结构,其磁矩随着覆盖率的增加而增大,其电子学性质与氟原子在BN纳米管表面的覆盖结构有关.因此,具有磁性的氟化BN纳米管比氢化BN纳米管在实验上更容易实现.可以预见,磁性氟化BN纳米管将在自旋电子器件的制作中发挥巨大的应用价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号