首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 187 毫秒
1.
钨合金弹丸超高速撞击的分子动力学研究   总被引:1,自引:0,他引:1  
于超  李平 《北京理工大学学报》2014,34(S1):64-66,101
针对高速穿甲与空间碎片超高速撞击航天器材的防护性能以及损伤破坏模式的问题,采用分子动力学方法,运用EAM势对钨合金弹丸超高速撞击靶板的动力学行为进行了数值模拟,定性研究了弹丸尺度、弹丸速度、靶板厚度以及材料模型对靶板穿孔、靶板破坏与碎片云形成的影响以及相应规律. 研究结果表明:同一时刻空筒蘑菇形碎片云的径向与轴向距离随弹丸直径、撞击速度的提高而增加. 反溅粒子与粒子堆积高度随弹丸直径、撞击速度提高而增加. 将分子动力学模拟结果与高质量试验结果进行了相应对比,模拟的碎片云形状、反溅粒子以及粒子堆积等特征与试验基本吻合,验证了利用分子动力学方法的有效性.  相似文献   

2.
为研究不同形状空间碎片超高速撞击薄板产生的碎片云特性,采用非线性动力学分析软件AUTODYN-2D,利用光滑质点动力学方法(SPH)对圆柱形弹丸超高速正撞击单层薄铝板防护结构形成的碎片云进行数值模拟,分析相同质量和速度条件下,不同长径比的圆柱形弹丸超高速撞击所产生碎片云的形态、轴向长度、径向直径、轴向速度等参量随弹丸长径比的变化规律。结果表明,弹丸破碎程度和碎片云分散程度随弹丸长径比的改变而改变。随着弹丸长径比的增加,碎片云对航天器舱壁的损伤能力增强,弹丸对薄板的损伤程度减弱。该结果为航天器超高速撞击风险评估和防护工程设计提供了参考。  相似文献   

3.
碰撞倾角对碎片云分布影响的数值模拟   总被引:1,自引:1,他引:0  
研究超高速斜碰撞所形成的二次碎片云的分布特性. 采用SPH与Lagrange耦合的方法计算了靶板上的穿孔尺寸随碰撞倾角的变化,并在此基础上模拟了碰撞倾角对二次碎片云分布的影响. 计算结果与实验拟合结果表明,所采用的耦合方法可以很好地模拟穿孔尺寸和二次碎片云分布;当碰撞倾角增大到60°时,法线碎片云的质心轨迹与直线碎片云的质心轨迹明显分离,并且反跳碎片云中弹丸材料的粒子数目将显著增加.  相似文献   

4.
刘林  杨健 《科技信息》2012,(26):119-120
碎片云特性对空间碎片撞击航天器防护结构的损伤程度具有重大影响。本文采用数值仿真软件AUTODYN对球形弹丸超高速撞击单层板和双层板的碎片云特性进行了模拟,分析了弹丸超高速撞击不同层数防护板后的碎片云形态,研究了速度和板间距对碎片云特性的影响。研究表明:碎片云的形成需要一定的条件,速度和板间距对碎片云的特性有重要影响。  相似文献   

5.
为分析梯度分布对波阻抗梯度材料超高速撞击防护特性的影响,针对梯度分布为钛合金/铝合金/镁合金的波阻抗梯度材料,设计开展了以钛合金为撞击面(正撞击)、镁合金为撞击面(反撞击)的超高速撞击实验与数值模拟研究.研究获得了实验条件下防护结构碎片云特性及后墙损伤特性,并借助数值模拟,深入分析了不同撞击条件下弹靶冲击压力特性、内能转化特性.结果表明,正撞击有利于增大弹靶冲击压力,促进动能向内能的转化,从而提高防护能力.  相似文献   

6.
采用理论分析和数值模拟结合的方法对超高速碰撞产生等离子体问题进行研究. 通过SPH方法,建立二维轴对称模型,针对不同碰撞速度进行数值模拟,对比不同时刻碎片云的形状以及膨胀速度,验证数值模拟的正确性;利用Thomas-Fermi模型,计算超高速碰撞过程中SPH粒子的温度,对于发生汽化的部分考虑其产生的等离子体参数;以统计物理学为基础,基于化学反应动力学原理,建立了非热平衡等离子体电子数密度、电子温度、宏观温度以及内能之间的关系,用以计算超高速碰撞过程中产生等离子体的参数. 给出不同时刻碰撞产生的总电荷数随时间的变化,将数值模拟结果与文献中经验公式结果进行对比,验证了本文中计算超高速碰撞产生等离子体方法的正确性.  相似文献   

7.
传统基于网格数值方法在模拟超高速碰撞时存在着材料大变形引起节点位置异常变化,导致单元畸变严重使计算无法进行;尤其是超高速碰撞中引起的材料断裂、破碎等用传统网格算法很难准确描述. 为克服传统网格算法在模拟超高速碰撞时存在的缺陷和不足,用二维颗粒元法模拟直径为5 mm球形弹丸以4~7 km/s对2 mm厚的靶板碰撞. 模拟结果表明,该方法克服了计算过程中存在的网格畸变现象,模拟得到的弹丸对薄靶开孔规律和形成碎片云形貌与实验基本吻合,证实了二维颗粒元法可作为新方法模拟超高速碰撞.  相似文献   

8.
采用AUTODYN-2D无网格光滑粒子流体力学方法(SPH)数值技术,对遭遇速度为1.5~2.5 km/s下圆柱钨弹丸垂直碰撞装甲靶板产生的二次破片云分布特征进行了数值模拟,获得了不同碰撞速度下靶板穿孔直径及破片云前端运动速度、侧向膨胀速度和最大飞散角等分布特征.在此基础上,建立了二次破片云质量及空间分布预测模型.结果表明,数值模拟和模型预测均与实验结果相吻合.  相似文献   

9.
针对航天器的碰撞毁伤程度与超高速斜碰撞所产生碎片云的形态的关系,利用光滑质点流体动力学(sPH)方法研究了超高速斜碰撞所产生碎片云的形态.主要分析了碰撞参数,如弹丸速度、靶板厚度、弹丸直径对碎片云形态的影响.仿真结果表明,二次碎片云的膨胀速度以及膨胀尺寸随碰撞速度和弹丸直径的增加而增加,随靶板厚度的增加而减小.  相似文献   

10.
为解决非球形弹丸正撞击充气压力容器问题,应用非线性动力学分析软件AUTODYN,在相同质量和速度的条件下,采用光滑质点流体动力学方法 SPH,对具有不同长径比的圆锥形弹丸、圆柱形弹丸撞击压力容器产生的碎片云特性进行数值模拟,分别分析圆锥形弹丸、圆柱形弹丸长径比对碎片云形态、尖端速度及径向扩展直径的影响。结果表明:弹丸形状及弹丸长径比对碎片云在高压气体中的运动特性影响较大。随着弹丸长径比的增加,圆柱形弹丸碎片云径向扩展直径减小;随着弹丸长径比的增加,相同质量和相同撞击速度的圆锥形弹丸及圆柱形弹丸碎片云的损伤力增强。  相似文献   

11.
航天器结构防护的实验研究需要将克量级的金属飞片加速到10 km/s左右的超高速状态,目前中国工程物理研究院流体物理研究所在二级轻气炮装置上对这一关键技术取得了突破性进展,成功将克量级的LY12铝飞片驱动加速到11.0 km/s,将克量级的高密度Ta和Pt飞片分别驱动加速到约10.0 km/s和9.0 km/s.本文简要回顾了我们近年来的实验研究结果,并利用研制的高精度MFPPM计算程序对气炮加载驱动超高速飞片过程进行数值模拟,给出的飞片自由面速度与实验测量结果基本一致.考虑到超高速碰撞效应涉及物质熔化、汽化和等离子状态等宽区物态方程问题,进一步发展了具有自主知识产权的LSFC欧拉型计算程序,在气炮加载驱动超高速飞片问题中对其进行了验证,其计算结果与MFPPM的计算结果基本吻合,拟进一步发展后将其应用于超高速空间碎片及其防护的数值模拟研究.  相似文献   

12.
LY-12铝合金熔化的临界碰撞速度   总被引:1,自引:0,他引:1  
借助于二级轻气炮,实现了LY-12铝合金弹丸以4 ̄6km/s的速度对铝双层板的超高速碰撞。对LY-12铝合金球形弹丸超高速冲击铝双层板熔化的临界条件进行了研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号