共查询到20条相似文献,搜索用时 62 毫秒
1.
针对洞库类目标自动识别研究较少、识别率较低、识别方法成本较高等问题,设计了基于多种特征的洞库类目标识别算法.探讨了典型洞库类目标的模型并总结其主要特征;其次利用HOG特征对输入图像进行初步筛选,筛选出包含有洞库类目标的图像;然后基于洞库类目标的灰度特征提出了一种图像局部自适应阈值生成算法Wiblack提取图像中的疑似目标;最后搭建了洞库类目标的数学模型,并提出了基于形状相似度的目标判别算法,采用圆形相似度与椭圆形状相似度二次相似度判别方法,最终得出识别结果并描述目标轮廓,完成目标识别.实验结果表明该方法在洞库类目标的识别应用中有效可行,基于本文实验数据的识别准确度为92.6%. 相似文献
2.
针对目前电力巡检图像中传统的防振锤检测方法仍存在效率低、精度差、计算成本高等问题,提出了一种基于区域全卷积网络(region-based fully convolutional networks,R-FCN)的电力巡检图像防振锤智能识别方法。该方法通过特征提取网络自动提取防振锤特征,省却了传统检测方法特征提取的过程,提高了效率。此外,在R-FCN网络当中采用位置敏感池化来引入平移变换,抵消全卷积网络造成的平移不变性问题,在检测精度和效率上均有较大提高。实验结果表明,该方法能准确检测出复杂背景下不同形态的防振锤,且平均准确率高达88%,具有较强的鲁棒性 相似文献
3.
文孟飞;胡超;刘伟荣 《中南大学学报(自然科学版)》2016,47(5):1580-1587
提出一种基于深度学习的异构多模态目标识别方法。首先针对媒体流中同时存在音频和视频信息的特征,建立一种异构多模态深度学习结构;结合卷积神经网络和限制波尔兹曼机的算法优点,对音频信息和视频信息分别并行处理,生成基于典型关联分析的共享特征表示,并进一步利用时间相关特性进行参数的优化。分别使用标准语音人脸库和截取的实际电影视频对算法进行实验。研究结果表明:对于这2种视频来源,所提出方法在目标识别的精度方面都有显著提高。 相似文献
4.
传统验证码识别方法对不同类型的验证码泛化能力和鲁棒性较差。为此,提出一种基于深度卷积神经网络的端对端验证码识别方法。首先,通过并行级联的卷积层构建简易Inception模块,替代Google-net的卷积层,在降低调整参数数量的同时,提高网络对于不同感受野尺度的适应性。同时,采用全局平均池化层替换原全连接层以防止过拟合,提高网络学习效率。其次,在训练过程中,直接利用深度网络的学习能力自动提取和识别验证码图像的字符特征信息,无须对验证码图像进行预分割,可以有效避免因字符分割引起的误差累积问题。通过对谷歌验证码、正方教务系统验证码和京东验证码的测试,结果表明本方法具有更好的泛化能力和鲁棒性,对三类验证码的识别率分别达到96.3%、98.9%和99%,比经典卷积神经网络分别提高3.14%、2.75%和1.14%。 相似文献
5.
6.
陈宏彩 《河北省科学院学报》2017,34(2):1-6
车辆颜色是车辆中显著而稳定的特征之一,在智能交通系统中具有重要的作用。针对人工设计的特征提取方法难以有效表达复杂环境下车辆颜色特征的问题,本文在AlexNet网络结构基础上,通过调整网络结构、优化网络参数,形成了基于卷积神经网络的车辆颜色识别网络模型。该方法不需要预处理过程,能够自适应地学习车辆颜色特征表示。对常见的车辆颜色进行训练测试的实验结果表明,本文提出的方法应用到车辆颜色识别问题上具有较好的优势。 相似文献
7.
为避免在处理掌纹识别时人工提取掌纹特征,提出使用卷积神经网络(CNN)来处理掌纹识别问题。首先根据掌纹的几何形状特点进行预处理,切割出掌纹的感兴趣区域(ROI);然后将感兴趣区域进行归一化并组成一个二维矩阵作为卷积神经网络的输入;再使用批量随机梯度下降算法对网络进行训练,得到最优的网络参数;最后对测试掌纹进行分类识别,分类器使用Softmax。应用于香港理工大学掌纹数据库(v2)的掌纹识别率达到99.15%,单张掌纹的识别时间小于0.01 s,验证了方法的有效性。 相似文献
8.
现役的常规雷达一般不具备径向上和横向上的高分辨率,雷达所揭示的目标信息非常有限。贝叶斯网络基本原理基于概率论的统计知识,作为一种分类器,它使错误的分类概率最小。文中将它引入雷达目标识别,将这些有限的信息利用起来实现对雷达目标的粗分类,取得了不错的效果。 相似文献
9.
针对卷积神经网络(CNN)在交通标志识别过程中出现的梯度弥散而引起的识别率低的问题,给出了基于改进CNN结构的交通标志识别方法.实验结果表明:该方法能够有效提高识别精度,防止梯度弥散. 相似文献
10.
针对现有空中目标识别方法敏捷性和可靠度不够高的问题,研究设计了一种深度学习模型MLSTMFCN,结合了全卷积神经网络、循环神经网络和压缩与激励模块的优点。全卷积网络能够提取空战数据中的复杂局部特征,长短记忆神经网络可以捕捉空战意图数据的时序特征。通过消融实验和对比实验结果表明,MLSTM-FCN 模型在意图识别准确率、反应速度和抗干扰能力方面明显优于现有的空中目标意图识别模型,取得了sota的结果,为指挥员在进行空中作战决策时提供更有效的依据。 相似文献
11.
针对基于卷积神经网络的图像识别采用随机初始化网络权值的方法易收敛到局部最优值的问题,该文提出了一种结合无监督和有监督学习的网络权值预训练算法。融合零成分分析白化与深度信念网络预学习得到的特征,对卷积神经网络权值进行初始化;通过卷积、池化等操作,对训练样本进行特征提取并使用全连接网络对特征进行分类;计算分类损失函数并优化网络参数。在公开图像数据库中进行了大量实验,与公开最佳算法比较,该算法在MNIST中的识别错误率降低了0.1%,在Caltech101中的分类准确率提升了0.56%,验证了该算法优于现有算法。 相似文献
12.
深度学习技术在图像识别领域取得了显著进展,从经典卷积神经网络到轻量化模型和迁移学习,可以大幅提升了图像分类与目标检测的精度与效率,其中小尺寸图像分类任务由于图像信息量有限,还是存在很多挑战。本研究提出了一类基于图卷积神经网络的小尺寸图像识别算法。该算法在模型架构设计中,通过引入残差连接将第三层的图卷积层重构为残差拼接的图卷积层,有效缓解了深层网络梯度消失问题,并增强了特征传递能力;同时采用注意力池化替代传统平均池化,通过动态分配节点权重强化关键特征的表达能力。基于Fashion MNIST数据集的实验表明,改进后的模型较基准模型分类准确率提升了7%,融合残差连接与注意力机制的图卷积神经网络架构,在超小尺寸图像分类和视角变形任务中展现出更强的鲁棒性,为相关领域的研究提供了新的技术路径。 相似文献
13.
提出运用双层卷积神经网络模型实现基于足底压力图像的步态识别方法.首先,对足底压力数据采集系统采集的图像作相应预处理;然后,用双层卷积神经网络模型学习得到足底压力图像的单层和双层卷积特征;最后,将卷积特征训练分类器得到分类结果.实验结果验证了该算法的有效性. 相似文献
14.
杨格兰;邓晓军;刘琮 《中南大学学报(自然科学版)》2016,47(7):2311-2319
基于特征抽取是表情识别算法中的重要步骤,但是现有算法依赖手工设计特征且适应性差等问题,提出基于深度时空域卷积神经网络的表情识别模型,采用数据驱动策略直接从表情视频中自动抽取时空域中的动静态特征。使用新颖的卷积滤波器响应积替代权重和,使得模型能同时抽取到动态特征和静态特征。引入深度学习的多层设计,使得模型能逐层学习到更抽象、更宏观的特征。采用端对端的有监督学习策略,使得所有参数在同一目标函数下优化。研究结果表明:训练后的卷积核类似于Garbor滤波器的形态,这与视觉皮层细胞对激励的响应相似;该模型能对表情视频进行更准确分类;通过与其他几种近年出现的算法进行比较,验证该算法的优越性。 相似文献
15.
为了解决深度学习中使用线性修正函数Re LUs对于模型的表达能力欠缺,而柔性光滑函数Softplus无稀疏表达能力的问题。基于Re LUs和Softplus函数各自的优点,将Re LUs函数的稀疏表达能力和Softplus函数的光滑特性结合起来,提出一种使用非线性修正函数作为神经元激励的方法。分析了不同激活函数的性能,并且用卷积神经网络在MNIST和CIFAR-10标准数据库上进行图像分类识别实验。实验结果表明,使用非线性修正激活函数,不仅可以加快网络收敛速度,也可以提高识别准确率;同时还不依赖于池化方法的选择。 相似文献
16.
舰船目标识别技术研究进展 总被引:1,自引:0,他引:1
舰船目标的有效识别和监控对维护海洋权益、保障海上航行安全至关重要。根据舰船目标信息的获取形式,从辐射噪声信号、雷达回波信号、卫星遥感图像、合成孔径雷达图像、红外图像、可见光图像几个舰船目标的主要信息获取来源出发,阐述了舰船目标识别技术的研究进展,总结分析了目前基于不同信号源的舰船目标识别方法普遍存在的具有高度任务相关性、计算成本高与运行时间长等问题。结合深度学习技术在语音识别、图像识别等领域的发展,建议将基于深度学习技术的典型目标识别方法Faster R-CNN及YOLO引入舰船目标识别领域,以研究鲁棒性更好、准确率更高、实时性更强的舰船目标识别方法。 相似文献
17.
针对困难气道气管插管过程中内窥镜图像视角较小、目标尺度变化大、相互遮挡等问题,融合内窥镜图像和CO2浓度信息,提出基于深度学习的多模态气管插管智能目标检测算法。首先,对传统的YOLOv3网络进行改进,利用不同扩张率的空洞卷积构建并行多分支空洞卷积模块,并对输出特征进行上采样和张量拼接;其次,根据多路CO2浓度差异,利用矢量化定位算法定位目标中心位置,校正YOLOv3得到的边界框的中心坐标,提升小目标检测的精度,辅助气道位置的定位;最后,基于该算法,研发了新型多模态气管插管辅助装置初代样机,并在模拟气道中进行实验,验证其可行性。在模拟气道中,该新型辅助装置的操作时间中位数为15.5 s,操作成功率可达97.3%。研究结果表明,基于深度学习的多模态气管插管智能目标检测算法能够有效地辅助气管插管操作。 相似文献
18.
针对视频序列中人体行为检测的问题,提出一种基于边界敏感网络的时序行为候选生成算法,在原有边界敏感网络的基础上通过对时序评估模块和候选评估模块引入更深层的卷积神经网络,进而对视频特征有更好的表达。同时在后处理阶段,在NMS(non-maximum suppression)算法中引入新的置信度分数高斯加权衰减方法。实验结果表明,该算法可以有效提高行为检测问题中时序行为候选生成任务的召回率。在公开数据集Activity Net上,提出的方法在保证生成相同数量候选的同时有更高的平均召回率。 相似文献
19.
【目的】针对Mean squared error(MSE)作为损失函数在人眼感知方面存在局限性,以及基于卷积神经网络的图像超分辨率(Super-resolution,SR)算法生成的图像存在参数较多、计算量较大、训练时间较长、纹理模糊等问题,设计基于深层卷积神经网络的单幅图像超分辨率重建模型。【方法】使用ImageNet预先训练的大型卷积神经网络Visual geometry group(VGG)模型提取图像特征,利用该特征设计视觉感知损失函数进行训练学习,引入亚像素卷积层(Sub-pixel convolution)替换上采样层,缓解生成图像的棋盘效应。【结果】设计的模型对放大两倍的图像进行超分辨率修复,与其他4种超分辨率重建模型的Peak signal to noise ratio(PSNR)值接近,且生成图像的视觉效果更加清晰逼真,细节更加细腻。【结论】该模型可以实现输入不同大小的低分辨率图像而不必多次训练学习不同比例的放大模型,可以实现对不同放大倍数图像的训练和预测,在保持一定PSNR正确率的前提下,放大后的超分辨率图像能够恢复更多纹理细节和更佳视觉效果。 相似文献
20.
小图像由于像素少、分辨率低、整幅图像包含信息较少,识别较为困难。目前优秀的深度卷积神经网络模型多为大图像而设计,而用于小图像的模型则存在着层次不够深、难以对特征进行充分抽象的不足。本文基于VGG19模型,依据卷积核分解的原理,设计了一种KDS-DCNN模型,模型深度达到31层,解决了目前超深度模型不能直接用于小图像识别的问题,实验表明该方法不但提升了识别性能,而且还降低了模型的时间复杂度。在CIFAR-10、CIFAR-100和SVHN三个数据集上的验证结果显示,KDS-DCNN模型性能优越,其识别错误率分别降低到29.46%、6.02%和2.17%。 相似文献