首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Differential expression of myc family genes during murine development   总被引:13,自引:0,他引:13  
The myc family of cellular oncogenes contains three known members. The N-myc and c-myc genes have 5'-noncoding exons, strikingly homologous coding regions, and display similar oncogenic potential in an in vitro transformation assay. The L-myc gene is less well characterized, but shows homology to N-myc and c-myc (ref. 6; also see below). c-myc is expressed in most dividing cells, and deregulated expression of this gene has been implicated in the development of many classes of tumours. In contrast, expression of N-myc has been found only in a restricted set of tumours, most of which show neural characteristics; these include human neuroblastoma, retinoblastoma and small cell lung carcinoma (SCLC). L-myc expression has so far been found only in SCLC. Activated N-myc and L-myc expression has been implicated in oncogenesis; for example, although N-myc expression has been found in all neuroblastomas tested, activated (greatly increased) N-myc expression, resulting from gene amplification, is correlated with progression of the tumour. We now report that high-level expression of N- and L-myc is very restricted with respect to tissue and stage in the developing mouse, while that of c-myc is more generalized. Furthermore, we demonstrate that N-myc is not simply a neuroectoderm-specific gene; both N- and L-myc seem to be involved in the early stages of multiple differentiation pathways. Our findings suggest that differential myc gene expression has a role in mammalian development and that the normal expression patterns of these genes generally predict the types of tumours in which they are expressed or activated.  相似文献   

3.
Expression of N-myc in teratocarcinoma stem cells and mouse embryos   总被引:3,自引:0,他引:3  
A Jakobovits  M Schwab  J M Bishop  G R Martin 《Nature》1985,318(6042):188-191
The N-myc gene, which is distantly related to the proto-oncogene c-myc, was first detected as an amplified sequence in human neuroblastoma cell lines and tumours. It has since been revealed that there is up to a 300-fold amplification of N-myc DNA in almost 50% of advanced metastatic human neuroblastomas, whereas amplification is not detected in less advanced tumours that have a better prognosis (ref.3 and M.S., unpublished data). Although expression of N-myc is detectable in all neuroblastoma cell lines and tumours examined, its level is greatly enhanced when the N-myc gene is amplified. Recently, it has been shown that on co-transfection with the c-Ha-ras (EJ) gene, N-myc can induce the malignant transformation of rat embryo fibroblasts. Taken together, these data imply a function for N-myc in the development and/or progression of human neuroblastomas. Surveys indicate that N-myc also may be amplified and/or expressed in two other types of human tumours and cell lines derived from them: retinoblastomas and small cell lung cancers. Here, we report that N-myc is expressed at high levels in mouse and human teratocarcinoma stem cells, thus identifying another tumour cell type that expresses the N-myc gene. In addition, we found that N-myc is abundantly expressed in mouse embryos at mid-gestation and that its expression appears to decrease as the embryo approaches term. In the adult mouse, N-myc is expressed at an approximately fivefold lower level in the brain than in teratocarcinoma stem cells and embryos, and at even lower levels in the adult testis and kidney. Our data represent the first demonstration of expression of the N-myc gene in normal cells, and suggest that N-myc may be involved in mammalian embryogenesis.  相似文献   

4.
M Schwab  H E Varmus  J M Bishop 《Nature》1985,316(6024):160-162
Proto-oncogenes represent a group of eukaryotic genes whose activated forms are implicated in the development of cancer. We have recently identified a human gene, N-myc, that is distantly related to the proto-oncogene c-myc. N-myc is expressed at abnormally high levels consequent to amplification in numerous human neuroblastoma cell lines and metastatic neuroblastoma tumours. In addition, enhanced expression of N-myc, often a result of amplification, has been found in retinoblastoma cell lines and tumours (refs 5, 7 and M.S., unpublished data) and in cell lines derived from small-cell carcinomas of the lung. Here, we show that enhanced expression of N-myc subsequent to co-transfections of an N-myc expression vector and the mutant c-Ha-ras-1(EJ) (from the human bladder carcinoma cell line EJ) is a factor in tumorigenic conversion of secondary rat embryo cells. The transformed cells elicit tumours in athymic mice and isogeneic rats. The ability of N-myc to contribute to neoplastic transformation of cultured mammalian cells raises the possibility that enhanced expression consequent to amplification of N-myc may be a factor in the aetiology of human neuroblastoma.  相似文献   

5.
The recent finding of c-myc activation by insertion of woodchuck hepatitis virus DNA in two independent hepatocellular carcinoma has given support to the hypothesis that integration of hepatitis B viruses into the host genome, observed in most human and woodchuck liver tumours, might contribute to oncogenesis. We report here high frequency of woodchuck hepatitis virus DNA integrations in two newly identified N-myc genes: N-myc1, the homologue of known mammalian N-myc genes, and N-myc2, an intronless 'complementary DNA gene' or 'retroposon' that has retained extensive coding and transforming homology with N-myc. N-myc2 is totally silent in normal liver, but is overexpressed without genetic rearrangements in most liver tumours. Moreover, viral integrations occur within either N-myc1 or N-myc2 in about 20% of the tumours, giving rise to chimaeric messenger RNAs in which the 3' untranslated region of N-myc was replaced by woodchuck hepatitis virus sequences encompassing the viral enhancer. Insertion sites were clustered in a short sequence of the third exon that coincides with a retroviral integration hotspot within the murine N-myc gene, recently described in T-cell lymphomas induced by murine leukaemia virus. Thus, comparable mechanisms, leading to deregulated expression of N-myc genes, may operate in the development of tumours induced either by hepatitis virus or by nonacute retroviruses in rodents. Activation of myc genes by insertion of hepadnavirus DNA now emerges as a common event in the genesis of woodchuck hepatocellular carcinoma.  相似文献   

6.
C J Thiele  C P Reynolds  M A Israel 《Nature》1985,313(6001):404-406
Proto-oncogenes may be important in the cellular processes central for the growth and differentiation of normal cells. N-myc is a DNA sequence which shares limited homology to the proto-oncogene c-myc and has been found to be amplified in both primary tissue and cell lines from neuroblastoma, a childhood tumour of neuroectodermal origin. Differentiation of this embryonal tumour is of clinical importance, since occasional tumours have been noted to differentiate in vivo to benign ganglioneuroma. In vitro, many human neuroblastoma cell lines can be induced to differentiate morphologically and biochemically by a variety of agents. Retinoic acid (RA), an analogue of vitamin A, has been shown to inhibit neuroblastoma cell growth and clonability in soft agar, and to induce extensive neurite outgrowth. Therefore we examined the relationship of N-myc expression to the in vitro differentiation of these cells. We report here that in the case of RA-induced differentiation, a decreased level of expression is detected within 6 h of treatment and precedes both cell-cycle changes and morphological differentiation.  相似文献   

7.
W W Colby  E Y Chen  D H Smith  A D Levinson 《Nature》1983,301(5902):722-725
Avian myelocytomatosis virus MC29 is a replication-defective acute leukaemia virus which induces a variety of tumours in chickens including sarcomas, renal and hepatic carcinomas, and myelocytomatosis. The oncogenic potential of the virus is mediated by the gene v-myc, acquired from sequences (c-myc) present in normal uninfected chicken DNA. Sequences closely related to chicken c-myc have been highly conserved throughout evolution, from Drosophila to vertebrates. The hypothesis that c-myc may be involved in neoplastic transformation has been strengthened by the finding that B-cell lymphomas induced in chickens by avian leukosis virus (ALV) are often associated with increased expression of c-myc resulting from integration of the ALV provirus adjacent to the c-myc gene. More recently, it has been demonstrated that the malignant human cell line HL-60, derived from the peripheral blood leukocytes of a patient with acute promyelocytic leukaemia, expresses elevated levels of myc-related mRNA associated with an amplification of the c-myc gene. To explore the relationship of the human cellular myc gene with the corresponding viral oncogene from MC29, and to provide a framework for the analysis of the mechanism and significance of c-myc amplification in human tumours, we have isolated and determined the nucleotide sequence of a genomic clone prepared from a normal human library which contains all domains sharing homology with v-myc.  相似文献   

8.
The myelocytomatosis viruses are a family of replication-defective avian retroviruses that cause a variety of tumours in chickens and transform both fibroblasts and macrophages in culture through the activity of their oncogene v-myc. A closely related gene (c-myc) is found in vertebrate animals and is thought to be the progenitor of v-myc. Changes in the expression and perhaps the structure of c-myc have been implicated in the genesis of avian, murine and human tumours (for a review, see ref. 15). Elucidation of the mechanisms by which v-myc and c-myc might elicit tumorigenesis requires identification of the proteins encoded by these genes. To this end, we have expressed a portion of v-myc in a bacterial host and used the resulting protein to raise antisera that react with myc proteins. We report here that v-myc and c-myc encode closely related proteins with molecular weights (MWs) of approximately 58,000. Integration of retroviral DNA near or within c-myc in avian lymphomas apparently enhances expression of the gene. Here we have used cells from one such tumour to identify the protein encoded by c-myc and find that the coding domain for the gene is probably intact.  相似文献   

9.
10.
A K Rustgi  N Dyson  R Bernards 《Nature》1991,352(6335):541-544
The proteins encoded by the myc gene family are involved in the control of cell proliferation and differentiation, and aberrant expression of myc proteins has been implicated in the genesis of a variety of neoplasms. In the carboxyl terminus, myc proteins have two domains that encode a basic domain/helix-loop-helix and a leucine zipper motif, respectively. These motifs are involved both in DNA binding and in protein dimerization. In addition, myc protein family members share several regions of highly conserved amino acids in their amino termini that are essential for transformation. We report here that an N-terminal domain present in both the c-myc and N-myc proteins mediates binding to the retinoblastoma gene product, pRb. We show that the human papilloma virus E7 protein competes with c-myc for binding to pRb, indicating that these proteins share overlapping binding sites on pRb. Furthermore, a mutant Rb protein from a human tumour cell line that carried a 35-amino-acid deletion in its C terminus failed to bind to c-myc. Our results suggest that c-myc and pRb cooperate through direct binding to control cell proliferation.  相似文献   

11.
Amplified cellular genes in mammalian cells frequently manifest themselves as double minute chromosomes (DMs) and homogeneously staining regions of chromosomes (HSRs). With few exceptions both karyotypic abnormalities appear to be confined to tumour cells. All vertebrates possess a set of cellular genes homologous to the transforming genes of RNA tumour viruses, and there is circumstantial evidence that these cellular oncogenes are involved in tumorigenesis. We have recently shown that DMs and HSRs in cells of the mouse adrenocortical tumour Y1 and an HSR in the human colon carcinoma COLO320 contain amplified copies of the cellular oncogenes c-Ki-ras and c-myc, respectively. Both DMs and HSRs are found with remarkable frequency in cells of human neuroblastomas. We show here that a DNA domain detectable by partial homology to the myc oncogene is amplified up to 140-fold in cell lines derived from different human neuroblastomas and in a neuroblastoma tumour, but not in other tumour cells showing cytological evidence for gene amplification. By in situ hybridization we found that HSRs are the chromosomal sites of the amplified DNA. The frequency with which this amplification appears in cells from neuroblastomas and its apparent specificity raise the possibility that one or more of the genes contained within the amplified domain contribute to tumorigenesis.  相似文献   

12.
Overexpression of the proto-oncogene c-myc has been implicated in the genesis of diverse human tumours. c-Myc seems to regulate diverse biological processes, but its role in tumorigenesis and normal physiology remains enigmatic. Here we report the generation of an allelic series of mice in which c-myc expression is incrementally reduced to zero. Fibroblasts from these mice show reduced proliferation and after complete loss of c-Myc function they exit the cell cycle. We show that Myc activity is not needed for cellular growth but does determine the percentage of activated T cells that re-enter the cell cycle. In vivo, reduction of c-Myc levels results in reduced body mass owing to multiorgan hypoplasia, in contrast to Drosophila c-myc mutants, which are smaller as a result of hypotrophy. We find that c-myc substitutes for c-myc in fibroblasts, indicating they have similar biological activities. This suggests there may be fundamental differences in the mechanisms by which mammals and insects control body size. We propose that in mammals c-Myc controls the decision to divide or not to divide and thereby functions as a crucial mediator of signals that determine organ and body size.  相似文献   

13.
The association between certain human tumours and characteristic chromosomal abnormalities has led to the hypothesis that specific cellular oncogenes may be involved and consequently 'activated' in these genetic recombinations. This hypothesis has found strong support in the recent findings that some cellular homologues of retroviral onc genes are located in chromosomal segments which are affected by specific tumour-related abnormalities (see ref. 4 for review). In the case of human undifferentiated B-cell lymphoma (UBL) and mouse plasmacytomas, cytogenetic and chromosomal mapping data have identified characteristic chromosomal recombinations directly involving different immunoglobulin genes and the c-myc oncogene (for review see refs 5, 6). In UBLs carrying the t(8:14) translocation it has been shown that the human c-myc gene is located on the region of chromosome 8 (8q24) which is translocated to the immunoglobulin heavy-chain locus (IHC) on chromosome 14. Although it is known that the chromosomal breakpoints can be variably located within or outside the c-myc locus and within the IHC mu (refs 9, 11) or IHC gamma locus, the recombination sites have not been exactly identified and mapped in relation to the functional domains of these loci. We report here the identification and characterization of two reciprocal recombination sites between c-myc and IHC mu in a Burkitt lymphoma. Nucleotide sequencing of the cross-over point joining chromosomes 8 and 14 on chromosome 14q--shows that the onc gene is interrupted within its first intron and joined to the heavy-chain mu switch region. This recombination predicts that the translocated onc gene would code for a rearranged mRNA but a normal c-myc polypeptide.  相似文献   

14.
S P Piccoli  P G Caimi  M D Cole 《Nature》1984,310(5975):327-330
Many recent studies have shown that chromosomal translocation breakpoints frequently occur near cellular proto-oncogenes (reviewed in ref. 1). In both mouse plasmacytomas and Burkitt lymphomas, the c-myc oncogene becomes joined to an immunoglobulin heavy-chain gene in a head-to-head configuration. Within c-myc, the breaks frequently occur near the first exon-intron boundary, while within the immunoglobulin gene the breaks usually involve sequences directing heavy-chain switching. It has been assumed that the translocations represent abortive immunoglobulin switching events which have activated the c-myc gene for a role in tumour formation. However, sequence analysis of the c-myc gene does not reveal any apparent similarity to the immunoglobulin switch signals. With these results in mind, we have determined the precise breakpoints within c-myc for two plasmacytoma lines in order to search for any common features that may shed some light on the mechanism of chromosomal translocation. We report here that the tetranucleotide sequence GAGG occurs close to the breakpoint in five out of six translocations, and so may be a sequence recognized by either the enzymes that catalyse immunoglobulin heavy-chain switching, or some other DNA-cleaving activity.  相似文献   

15.
16.
Cooperative interaction between c-myc and bcl-2 proto-oncogenes.   总被引:78,自引:0,他引:78  
A Fanidi  E A Harrington  G I Evan 《Nature》1992,359(6395):554-556
The bcl-2 proto-oncogene is activated by translocation in a variety of B-lymphoid tumours and synergizes with the c-myc oncogene in tumour progression. The mechanism of synergy is unclear but bcl-2 expression inhibits apoptosis, a property presumably pertinent to its proto-oncogenic mode of action. We have shown that the c-myc gene is a potent inducer of apoptosis, in addition to its established role in mitogenesis. Here we show that expression of the bcl-2 protein, Bcl-2, specifically abrogates c-myc-induced apoptosis without affecting the c-myc mitogenic function. This provides a novel mechanism for oncogene cooperation, of potential importance both in carcinogenesis and in the evolution of drug resistance in tumours.  相似文献   

17.
The v-myc oncogene can induce tumours in haematopoietic, mesenchymal and epithelial tissues. The corresponding c-myc proto-oncogene can contribute to the genesis and/or the progression of an equally wide variety of tumours when activated by retroviral insertions, chromosomal translocations or gene amplification. The c-myc gene product is a DNA-binding, nuclear phosphoprotein that is involved in the control of cell proliferation and possibly in DNA synthesis. The replication of Simian virus 40 (SV40) is a useful model system to study eukaryotic DNA replication as the virus relies almost entirely on cellular DNA replication apparatus. The SV40-based vector, pSVEpR4, replicates poorly in the human BJAB lymphoma line and in most human cells, but replicates well in Burkitt lymphoma lines, which have fused immunoglobulin and c-myc genes, resulting in high c-myc expression. Cotransfection of the BJAB cells with a c-myc-expressing construct (pI4-P6) increased the replication of pSVEpR4 tenfold. Our findings indicate that overexpression of the c-myc gene product allows the replication of SV40 in human lymphoma cells, suggesting that c-myc is involved in the control of replication.  相似文献   

18.
J V Tricoli  L B Rall  J Scott  G I Bell  T B Shows 《Nature》1984,310(5980):784-786
The insulin-like growth factors IGF-I and IGF-II are required for growth and development. Both are single-chain proteins (of 70 and 67 amino acids respectively) derived from precursors by proteolytic processing. IGF-I may be particularly important in promoting normal stature and IGF-II may be a fetal growth hormone. The IGF proteins are probably synthesized by many normal tissues and by some tumours. The secretion of growth factors by tumours and tumour-derived cell lines suggests that they may act as autocrine regulators of cell proliferation. Because of the possible role of these proteins in growth disorders and cancer, and their sequence homology with insulin, we have determined their chromosomal localization. Using somatic cell hybrids and cloned cDNA probes for these proteins, we have assigned the genes for IGF-I and IGF-II to human chromosomes 12 and 11, respectively. We present evidence that the IGF-II gene is located on the short arm of chromosome 11 with a ras proto-oncogene and the insulin structural gene, and also suggest the existence of a fragment length polymorphism using the IGF-I probe.  相似文献   

19.
D L Vaux  S Cory  J M Adams 《Nature》1988,335(6189):440-442
A common feature of follicular lymphoma, the most prevalent haematological malignancy in humans, is a chromosome translocation (t(14;18] that has coupled the immunoglobulin heavy chain locus to a chromosome 18 gene denoted bcl-2. By analogy with the translocated c-myc oncogene in other B-lymphoid tumours bcl-2 is a candidate oncogene, but no biological effects of bcl-2 have yet been reported. To test whether bcl-2 influences the growth of haematopoietic cells, either alone or together with a deregulated c-myc gene, we have introduced a human bcl-2 complementary DNA using a retroviral vector into bone marrow cells from either normal or E mu-myc transgenic mice, in which B-lineage cells constitutively express the c-myc gene. Bcl-2 cooperated with c-myc to promote proliferation of B-cell precursors, some of which became tumorigenic. To determine how bcl-2 expression impinges on growth factor requirements, the gene was introduced into a lymphoid and a myeloid cell line that require interleukin 3 (IL-3). In the absence of IL-3, bcl-2 promoted the survival of the infected cells but they persisted in a G0 state, rather than proliferating. These results argue that bcl-2 provided a distinct survival signal to the cell and may contribute to neoplasia by allowing a clone to persist until other oncogenes, such as c-myc, become activated.  相似文献   

20.
C V Dang  M McGuire  M Buckmire  W M Lee 《Nature》1989,337(6208):664-666
c-Myc plays a part in the regulation of important cellular processes such as growth, differentiation and neoplastic transformation. Although c-myc gene structure and expression are well characterized, the function and biochemical properties of the protein are less well understood. Human c-myc is a 439-amino acid phosphoprotein which binds DNA in vitro and belongs to a discrete subset of nuclear proteins. Using the human c-myc mutants generated by linker-insertion and deletion mutagenesis, we have defined regions of the protein that are important for its transforming activities and its nuclear localization. Here, we show that human c-myc exists as an oligomer in vitro and use mutant proteins to localize the oligomerization domain to a carboxyl-terminal peptide containing the 'leucine zipper' motif. The 'leucine zipper' describes a structure found in a number of DNA-binding proteins that contains leucines occurring at intervals of every seventh amino acid in a region predicted to be alpha-helical. The 'leucine zipper' might mediate dimerization by intermolecular interdigitation of the leucine side-chains. We show that a c-myc mutant, which is inactive but can oligomerize, dominantly inhibits the cotransforming activity with wild-type c-myc of rat embryo cells, whereas inactive mutants which cannot oligomerize properly because of deletions in the oligomerization domain are recessive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号