首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以α-Fe2O3和NiO粉体为原料,NaCl为稀释剂,利用固相机械化学反应,在高能球磨作用下合成了NiFe2O4纳米晶.采用X射线衍射分析了合成NiFe2O4的过程和不同焙烧温度对晶粒尺寸的影响,计算了前驱体热处理过程晶粒长大的活化能.研究结果表明:制备的NiFe2O4纳米晶的晶粒尺寸为20~30 nm;焙烧温度越高,晶粒尺寸越大;NiFe2O4晶粒长大的表观活化能为16.7 kJ/mol,这表明热处理过程的晶粒长大主要以界面扩散为主.  相似文献   

2.
处于亚稳态的纳米晶体中晶粒在一定临界温度开始长大变为粗晶,该临界温度依赖晶粒中原子迁移所需的能量.根据纳米晶体中晶粒长大的微观过程以及晶粒中原子迁移能量状态与晶粒尺寸、形状的相关性,建立了计算纳米晶粒长大临界温度的"尺寸—形状"模型.基于该模型计算了钒和金纳米晶体中晶粒长大的临界温度,结果表明纳米晶粒长大的临界温度随晶粒尺寸的减少而降低,并且与晶粒形状相关,表现了明显的"尺寸—形状"效应.该理论模型计算结果与实验结果相吻合.  相似文献   

3.
一种新型晶粒长大抑制剂对YG10硬质合金烧结行为的影响   总被引:2,自引:0,他引:2  
研究了一种新型晶粒长大抑制剂对机械合金化制备的纳米晶WC-10Co复合粉末真空烧结行为的影响,探讨了其影响机理.研究结果表明:新型晶粒长大抑制剂有利于烧结致密化;在传统的过渡族元素碳化物基础上添加新型晶粒长大抑制剂,能明显提高复合抑制剂抑制晶粒长大效果,使WC晶粒在烧结过程中明显发生定向生长,抑制盘状WC晶粒的形成;含0.1%新型晶粒长大抑制剂的WC-10Co-0.8VC/Cr3C2纳米晶复合粉末压坯在1375℃烧结30 min后密度为14.48 g/cm3,WC晶粒尺寸为160 nm,显微硬度为2.150 GPa.  相似文献   

4.
介绍了喷射电铸快速制造技术的原理与系统组成,采用喷射电铸快速制造工艺制备了具有简单形状的纳米晶金属铜样件,运用扫描电子显微镜和X-射线衍射等现代分析手段对纳米晶微观结构进行分析.结果表明,喷射电铸能显著提高极限电流密度,细化晶粒,改善铸层质量.铜沉积层具有纳米晶微观结构,平均晶粒尺寸约为55.6nm,最小晶粒尺寸可达41.4nm.  相似文献   

5.
采用溶胶一凝胶法,在不同退火温度下得到了3种不同粒径的锰锌铁氧体纳米晶.利用X射线衍射研究了纳米晶的晶体结构和粒径,借助正电子湮没寿命谱仪讨论了纳米晶的缺陷随粒径的变化.结果显示,所得锰锌铁氧体纳米晶为立方尖晶石结构,且随着温度的升高纳米晶不断长大;随着粒径的增大,纳米晶的表面缺陷减小,晶界间的自由体积发生复合.  相似文献   

6.
以分析纯Bi2O3、LaO3、TiCl4为原料,NaOH为矿化剂,通过Glycothermal法制备了具有板状形貌的钛酸铋镧(BLT)纳米晶.采用X线衍射(XRD)和场发射扫描电镜(FESEM)等测试手段对纳米晶的微结构进行了表征,并研究了醇水体积比、反应时间和矿化剂加入量等因素对晶粒尺寸、形貌及结晶性的影响关系.结果表明:BLT纳米晶尺寸随醇水体积比增加而减小;随着反应时间的延长,晶粒尺寸与结晶度逐渐增大;随着矿化剂量的增加,晶粒宽厚比逐渐增大.当醇水体积比为1:5、反应时间为24 h、矿化剂引入量为0.266 mol/L时,BLT纳米晶宽厚比可达2.67.  相似文献   

7.
应用XRD,TEM,DSC等实验方法研究了第三组元Ni对Fe-Ti二元混合元素粉机械合金化反应的影响.试验中原子数百分比分别以5%和15%Ni取代部分Fe元素.研究结果表明固态合金化合成晶粒尺寸分别为12nm和6nm的纳米晶B2相.合金化中经历球磨“退火”过程,微观点阵畸变逐渐减弱,晶粒长大.Ni元素能使合成的B2结构纳米晶TiFe相的点阵畸变减小.合成的纳米晶相在973K产生相分解,析出低温马氏体TiNi相  相似文献   

8.
研究了ZnO纳米晶高温高压下的晶粒演化, 用MDI/JADE5 X射线衍射仪和XL30S-FEG场发射扫描电子显微镜对高压样品的相组成、晶粒尺寸及微观形貌进行了表征. 结果表明, 高压下, 200℃氧化锌纳米晶粒已经迅速长大. 300℃(包括300℃)以下, ZnO纳米材料中晶粒长大和晶粒减小的现象并存, 1 ~ 3 GPa烧结体晶粒尺寸随着压力的升高而增大, 4 ~ 6 GPa烧结体的晶粒尺寸随着压力的升高而减小. 400℃(包括400℃)以上, 1 ~ 6 GPa烧结体的晶粒尺寸随着压力的升高而不断增大. 在特定条件下, 可以获得高性能的ZnO纳米块体材料.  相似文献   

9.
纳米钨合金粉末常压烧结的致密化和晶粒长大   总被引:3,自引:1,他引:2  
高密度合金由于具有密度和强度高、延性好等一系列优异的性能,在军工上被用作动能穿甲弹材料.纳米材料被认为是21世纪应用前景非常广阔的新型材料,采用纳米粉末可望大大细化钨合金晶粒,显著提高合金的强度、延性和硬度等力学性能,因而是制备新型高强韧高密度钨合金的很重要的研究方向.作者采用机械合金化(MA)工艺制备了纳米钨合金复合粉末,研究了纳米钨合金粉末在常压氢气气氛中的烧结致密化和在烧结过程中的W晶粒长大行为.同时,指出了在液相烧结时存在的问题,即W晶粒加速重排、产生晶粒聚集与合并,迅速发生W晶粒长大,在较短时间内液相烧结时,W晶粒尺寸又长大到接近传统高密度合金水平.研究结果表明,MA纳米粉末促进了致密化,使致密化温度降低100~200℃;在一般固相烧结温度时可以得到晶粒粒径为3~5μm的细晶高强度合金.  相似文献   

10.
氧化钛纳米陶瓷的制备及其结构与力学性能   总被引:1,自引:0,他引:1  
为探讨在无压烧结过程中TiO2纳米陶瓷的致密化与晶粒长大的关系以及纳米陶瓷的结构对其力学性能的影响,采用溶胶一凝胶技术制备的不同颗粒粒径的TiO2纳米粉体经冷压成型后无压烧结TiO2纳米陶瓷.研究结果表明:利用相变辅助无压烧结方法在800℃烧结获得了晶粒粒径小于60 nm、相对密度超过95%的TiO2纳米块体陶瓷:当800℃以下烧结时,TiO2纳米陶瓷的相对密度随烧结温度的升高而快速增大,而TiO2纳米陶瓷的平均晶粒粒径随烧结温度升高则缓慢长大;当大于800℃的温度烧结时,TiO2纳米陶瓷的致密化加快,但陶瓷的晶粒粒径则快速长大.TiO2纳米陶瓷的显微硬度主要取决于TiO2纳米陶瓷的相对密度和平均晶粒粒径,即纳米氧化钛陶瓷的相对密度越大,晶粒粒径越小,则显微硬度越大.  相似文献   

11.
应用热力学方法,讨论了非晶晶化法制取纳米晶体时所得最小晶粒与晶化温度的关系.发现当退火温度为物体熔点的1/2时,可制得最小晶粒,而在此温度下,过冷液体与晶体之间的Gibbs自由能之差达到最大值.考虑到样品较薄时较为明显的表面效应,计算了金属样品厚度对晶粒最小尺寸的影响.结果表明,晶粒的最小限度不仅受晶化过程中自由能差的影响,还与晶体厚度有关.样品厚度越小,对生成的最小晶粒尺寸影响越大.  相似文献   

12.
用脉冲电沉积技术制备表面平整光亮的纳米晶Co-Ni-Fe合金镀层.采用XRD、TEM、SEM、EDS等方法研究了纳米晶Co-Ni-Fe合金镀层的微观组织结构、表面形貌和合金成分.研究了干滑动摩擦条件下纳米晶镀层的摩擦磨损性能、磨损后的组织结构和硬度的变化.结果表明:纳米晶Co-Ni-Fe合金镀层的晶体结构为单相面心立方结构.镀层的摩擦系数和磨损量随着摩擦载荷的提高而增大,即镀层的耐磨性随载荷的提高而下降.摩擦磨损使纳米晶Co-Ni-Fe合金镀层发生晶粒长大,摩擦载荷越大,磨损后镀层的硬度越低.  相似文献   

13.
氨基磺酸镍体系电沉积纳米镍的力学性能及热稳定性研究   总被引:2,自引:0,他引:2  
采用氨基磺酸镍体系镀镍液代替瓦特型镀镍液,应用脉冲电沉积技术,制备了平均晶粒尺寸为16.7 nm的纳米镍.在静拉伸应变速率范围(5×10-5~10-2s-1)内,纳米镍的强度和塑性均随应变速率的增加而增加,断裂形式表现为韧窝韧性断裂,获得的最高断裂强度和最大断裂延伸率分别为1 332MPa和5.31%.在退火温度为100、150和200℃保温1 h后,室温应变速率为10-3s-1时,纳米镍的强度和塑性随退火温度的升高而显著下降,原因为退火过程中晶内硫元素向晶界强烈偏聚引起材料变脆,断裂形式表现为晶间脆性断裂.XRD和TEM的观测结果表明,纳米镍在250℃退火时,晶粒发生显著长大,硬度快速下降.热分析仪测得的放热峰表明,275℃以后,大量的纳米晶粒发生异常长大.  相似文献   

14.
Al_2O_3/SiC纳米陶瓷复合材料的制备及力学性能   总被引:9,自引:0,他引:9  
采用一次粒径分别为10nm和15nm的αAl2O3和SiC粉体为原料,制备了Al2O3/SiC纳米陶瓷复合材料·纳米SiC颗粒明显抑制Al2O3基体晶粒的长大,SiC体积分数超过4%时,材料的断裂方式由沿晶断裂变为穿晶断裂·随SiC含量的增加,Al2O3/SiC纳米复合材料的硬度增大·材料的弯曲强度和断裂韧性在SiC体积分数为5%时达到最大值·最大三点弯曲强度和断裂韧性分别为641MPa和47MPam1/2,明显高于热压单相Al2O3陶瓷(344MPa和31MPam1/2)·复合材料的强化主要来源于内晶颗粒残余应力强化和晶粒细化...  相似文献   

15.
研究了纳米晶Fe85.2Cu1Al1Zr3.3Nb3.5B3Si3合金淬火态和退火态的微组织和磁性能.研究表明,样品经673~873K退火0.5h后,体心立方结构的纳米晶态α—Fe(Si)析出,晶粒尺寸呈线性增长,最终趋于15nm左右.合金的微组织是典型的纳米晶相,残余非晶相和粒问相的混合,其中各种相的体积分数变化都会影响其磁性能.在813K等温退火0.5h后,纳米晶相体积分数为40%,饱和磁感应强度为1.56T,矫顽力为1.787A.m^-1.  相似文献   

16.
为了获得更高强度的纤维增强复合电铸层,采用脉冲电流进行电沉积,并在电铸液中加入磺酰亚胺类添加剂,获得硼纤维-纳米晶镍复合电铸层。研究结果表明:在室温下,当硼纤维增强镍复合电铸层晶粒由微米级细化至90 nm时,其显微硬度由219 HV上升至712 HV,抗拉强度由1 018 MPa提高到1 375 MPa。随着电铸层晶粒的进一步细化,由于纤维与基体结合强度的下降,硼纤维-纳米晶镍复合电铸层抗拉强度呈明显下降趋势,但显微硬度依然上升。200℃时,与硼纤维增强微米晶镍复合电铸层相比,纳米晶复合电铸层依然具有很高的强度,但是当温度上升至400℃时,由于晶粒的迅速长大以及界面脆性物质的析出,纳米晶对纤维增强复合电铸层抗拉强度的提升效果已不再显著。  相似文献   

17.
高能球磨纳米镍粉制备块体材料的研究   总被引:1,自引:0,他引:1  
采用高能球磨法制备了纳米晶Ni粉末,对纳米晶粉末进行预压烧结,获得纳米晶镍块体材料.采用显微分析方法研究了纳米晶粉末和块体材料的显微组织结构.试验结果表明,高能球磨所得镍粉平均晶粒尺寸为10 nm;预压烧结块体的平均晶粒尺寸在100 nm以下;块体相对致密度在烧结温度为0.6Tm时达到最大值.  相似文献   

18.
低温球磨制备纳米晶Al-Zn-Mg-Cu合金   总被引:1,自引:1,他引:1  
利用低温液氮球磨技术制备了Al-Zn-Mg-Cu合金纳米晶粉末,并采用X射线衍射(XRD)对材料在球磨过程中的晶粒尺寸和微观应变进行了研究,利用扫描电镜(SEM)、透射电镜(TEM)和差热分析(DSC)等测试方法研究了材料的固态相变以及热稳定性.研究表明,粉末晶粒尺寸随着球磨的进行逐渐减小,球磨10h后晶粒尺寸达到45nm;微观应变随着球磨的进行逐渐增大.粉末球磨过程中,MgZn2相逐渐减少,合金元素过饱和固溶于α-Al晶格之中.球磨10h后仅有少量的MgZn2相存在.制备的Al-Zn-Mg-Cu纳米晶粉末在低于709K下加热,粉末晶粒长大速度较慢,表明Al-Zn-Mg-Cu纳米晶粉末具有较高的热稳定性.  相似文献   

19.
采用溶胶喷雾干燥-热还原法制备纳米晶93W-4.9Ni-2.1Fe复合粉末,利用高温热膨胀仪测定和研究纳米品复合粉末的烧结收缩动力学曲线特征,计算纳米晶W-Ni-Fe复合粉末的固相烧结激活能,并利用金相显微镜和扫描电镜分析致密化过程中显微组织的演变规律.研究结果表明:纳米晶W-Ni-Fe复合粉末的开始收缩和剧烈收缩温度分别为900℃和1 120℃,其最大的线收缩率达0.097 %/℃;在1 200℃以下的固相烧结阶段,压坯便发生显著的致密化,其致密化程度可达98%以上,固相烧结的表观激活能为154.83 kJ/mol,比传统粉末烧结激活能大大降低;在固相烧结期间,W晶粒尺寸长大缓慢,在1 380℃以上液相烧结时W晶粒长大急剧加快.  相似文献   

20.
为研究等温处理对铝热法制备的块体纳米晶Fe3Al平均晶粒尺寸和硬度影响,对制得的材料进行800~1 200℃的等温处理.通过XRD和TEM分析材料的晶体结构和平均晶粒尺寸,用布洛维光学硬度计测定材料的维氏硬度.结果表明:等温处理前后纳米晶Fe3Al的晶体结构未发生变化,均为无序bcc结构;材料的平均晶粒尺寸约为16 nm,在等温处理之后有所长大,1 200℃等温处理8 h后,平均晶粒尺寸达到最大值20 nm;纳米晶Fe3Al的维氏硬度约为481 HV,在等温处理之后略有减小,经1 200℃等温处理8 h,维氏硬度最小值为457 HV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号