首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用Hummers法,通过改变中温氧化时间研究了石墨氧化过程中官能团和结构的变化.结果表明:随着中温氧化时间的增加,含氧官能团的增加以C—O为主,其次为C O和O—C O;C—O主要出现在氧化前期,而C O则主要出现在氧化后期;氧化过程中,片层的颜色从边缘开始,由黑色逐渐向金黄色转变;随着中温氧化时间的增加,石墨在层间距被打开的同时,其面内晶格结构逐渐遭到破坏,无序程度逐渐增大,氧化前期对面内晶格结构的破坏较为严重.  相似文献   

2.
3.
表面含氧官能团对活性炭电化学性能的影响   总被引:1,自引:0,他引:1  
采用浓硝酸对椰壳活性炭和各壳活性炭进行液相氧化改性后,制成了以KOH为电解液的超级电容器的炭电极,研究表面含氧官能团在碱性电解液中对电容器电极的电化学性能的影响.运用低温N2吸附、XPS和FTIR表征活性炭孔结构和表面性质.研究结果表明,氧化后活性炭的比表面积和孔容降低,表面含氧量增大.且经硝酸氧化后炭表面的含氧官能团含量发生了变化,即在内酯基的含量减少的同时,羟基、羰基和菝基的含量增加,其中羟基含量的增幅最大.在50mA/g电流密度下经过100次充放电循环,氧化后的椰壳活性炭和杏壳活性炭质量比电容分别达到193 F/g和150F/g,均比氧化前提高了30%以上.由XPS的分析结果判断,羟基对电极比电容提高的贡献最大.同时,在大电流充放电时,氧化后炭电极的比电容的衰减率明显低于氧化前.  相似文献   

4.
采用对腐植酸中含氧官能团的分析方法,并做了一些改进,对黄县油页岩及其干酪根中含氧官能团进行了初步分析。结果发现,油页岩中羧基为1.01%,酚羟基为7.85%,羰基为4.55%,酯基为3.03%.黄县油页岩干酪根中聚集了相当量的含氧官能团,如黄县油页岩中含氧官能团以氧百分含量为基准约为15.50~15.70%,其干酪根中含氧官能因氧总量约为13.20%~13.40%.元素分析及显微镜下鉴定结果表明,黄县油页岩干酪根属于Ⅱ_1型干酪根,黄县油页岩是良好的生油岩。  相似文献   

5.
通过式外光谱仪的分析测定,确定石墨残存化合物存在朱少官能团,这些官能团对石墨的结构有影响,对石墨的性能也有直接影响,通过电阻率的测定,发现了性能的重大变化,本文对其影响做了详细分析。  相似文献   

6.
神府煤低温氧化过程中官能团结构演变   总被引:10,自引:1,他引:10  
在空气流化床中,从室温至200℃范围内每隔25℃分别对神府煤进行3h的氧化,运用FTIR技术分析了神府煤和其氧化产物中各官能团组成,并采取峰拟合手段和红外差减光谱定量地分析了随着温度的升高这些官能团的变化趋势。结果表明,神府煤低温氧化后,甲基、亚甲基等脂肪烃侧链与氧反应导致其含氧官能团增加和芳香族部分相对比例提高,在低于200℃的情况下,芳香环没有参与氧化反应。最后推测了煤炭低温氧化的一般反应历程。  相似文献   

7.
神府煤低温氧化过程中官能团结构演变   总被引:5,自引:0,他引:5  
在空气流化床中,从室温至200℃范围内每隔25℃分别对神府煤进行3h的氧化,运用FTIR技术分析了神府煤和其氧化产物中各官能团组成,并采取峰拟合手段和红外差减光谱定量地分析了随着温度的升高这些官能团的变化趋势。结果表明,神府煤低温氧化后,甲基、亚甲基等脂肪烃侧链与氧反应导致其含氧官能团增加和芳香族部分相对比例提高,在低于200℃的情况下,芳香环没有参与氧化反应。最后推测了煤炭低温氧化的一般反应历程。  相似文献   

8.
杨颖  孙振亚 《科学技术与工程》2012,12(24):6132-6138,6147
摘要:本文综述了活性炭表面主要的含氧官能团(surface oxygen groups),及表面官能团氧化改性的主要方法,并用Boehm滴定法和FT-IR对活性炭表面含氧官能团进行定量和定性分析;分析了表面含氧官能团对有机物和重金属离子的吸附机理的影响;并对其未来研究前景与方向进行了展望。特别强调了对活性炭作为环境纳米材料(物质)的载体在光催化中开展研究的重要性。  相似文献   

9.
有机官能团氧化数特征初探   总被引:1,自引:0,他引:1  
通过对有机物分子中官能团和活性部位点上碳氧化数的分析,探讨了局部氧化数、整体氧化数、同类物质的氧化数、芳香烃碳上的氧化数、含氮化合物氮原子上的氧化数、羧酸中羰基碳的氧化数以及杂环化合物相应原子的氧化数值.当发生氧化还原反应时。对这些活性部位点上原子的氧化数的变化情况也进行了一些初步的讨论.  相似文献   

10.
通过对活性炭纤维(ACF)进行热处理和氧化改性得到具有不同比表面积、孔结构以及含氧官能团的ACF样品,并对这一系列样品进行甲醛吸附研究。实验结果表明,沥青基活性炭纤维(P-ACF) OG-5A具有最小的比表面积和孔容,具有最大的甲醛穿透容量。通过回归分析表明,ACF样品的甲醛穿透容量主要由孔径为0.9~1.8 nm的孔的比表面积和孔容来决定,而不是取决于总比表面积和总孔容。P-ACF OG-7A的氧化改性显著提高了样品的甲醛吸附能力,其中浓HNO_3改性后提升效果最为明显,改性后穿透容量为58.21 mg/g,是未改性样品穿透容量的2.5倍。氧化改性ACF表面含氧量的增加使得甲醛吸附能力增强,进一步通过Boehm滴定实验和回归分析表明酸性含氧官能团(酚羟基、内酯基、羧基等)数量的增加是ACF样品甲醛吸附能力提升的主要原因。酸性含氧官能团富含C=O、C-OH等亲水基团,对甲醛的吸附十分有利。  相似文献   

11.
采用搅拌反应法制备了ZnCo(ZIF)与氧化石墨(graphite oxide,GO)的复合材料,热处理得到Co@N-doped rGO催化剂。通过X射线衍射(X-ray diffraction,XRD)和扫描电子显微镜(scanning electron microscopy,SEM)对催化剂进行结构表征,通过X射线光电子能谱(X-ray photoelectron spectroscopy,XPS)对催化剂进行表面元素分析,分别考察了金属(Zn和Co)加入量和热处理温度对催化剂氧气还原反应(oxygen reduction reaction,ORR)催化性能的影响,结果表明:所制备的催化剂整体呈层状分布,表面附着金属小颗粒团簇;随着金属加入量的增加,催化剂的ORR催化性能先增强后减弱;随着热处理温度的升高,催化剂的ORR催化性能先增强后减弱。所制备的S-2-850催化剂具有最好的ORR催化性能,在0.1 mol/L KOH电解液中,其起始电位和半波电位分别为0.871 V和0.804 V,在相同测试条件下活性稳定性优于20% Pt/C。  相似文献   

12.
分别以尼龙6和聚吡咯为基体,氧化石墨为填料,通过原位聚合反应制备了尼龙6-氧化石墨及聚吡咯-氧化石墨复合材料。两种复合材料的热电性能测试数据表明:氧化石墨在尼龙6基体中被同步还原为导电填料,尼龙6从绝缘体转变为半导体,热电性能大大增强,最大热电优值为9.45×10-6;氧化石墨在吡咯聚合过程中扮演着模板的角色,促成聚吡咯分子链有序排列及堆积,热电性能增强,且复合材料的电导率和Seebeck系数的最大值分别达到6056S/m和9.85μV/K-1,对应的热电优值为6.89×10-4。  相似文献   

13.
在氧化还原法制备石墨烯的工艺中,氧化石墨的制备尤为重要。以大鳞片石墨制备的膨胀石墨为原料,采用改进的Hummers法制备氧化程度高、可剥离度高的氧化石墨稀,研究中温氧化时间、氧化剂用量及高温反应对氧化石墨烯结构、形貌及氧化程度的影响,对样品进行扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)表征。结果表明:硫酸与膨胀石墨用量比为75 mL∶1 g,高锰酸钾与石墨用量比为4 g∶1 g,35℃水浴反应24 h,制备得到氧化程度高的大片氧化石墨烯。该方法工艺简单、反应温度低,无须进行高温反应,可以解决大鳞片石墨制备氧化石墨烯难度大,氧化效率低的问题。  相似文献   

14.
为了改善氧化石墨的亲油性,获得能够在有机溶剂甲苯中稳定分散的氧化石墨,以改进的Hummers法制备的氧化石墨胶体为前躯体,通过溶剂热法,在不同的反应条件下用十二胺对氧化石墨进行改性,制备了疏水的功能化氧化石墨.采用X射线衍射、紫外-可见分光光度计、红外光谱、拉曼和接触角测试对所得产物进行表征,考察了反应条件对产物结构及疏水性的影响.结果表明:经十二胺处理后氧化石墨的—COOH能与十二胺中的胺基发生反应,生成酰胺基团;在120℃,3h溶剂热条件下经过十二胺处理后的氧化石墨表现出了较好的疏水性,能均匀分散在甲苯中,真空抽滤获得的氧化石墨薄膜接触角由未处理前的16.9°提高到101.7°.  相似文献   

15.
活性炭纤维表面含氧基团及其对NO的还原   总被引:4,自引:0,他引:4  
利用程序升温还原装置(TPR)和程序升温脱附(TPD)、热重(TG)等试验方法,证明了未改性、硝酸基、铜基的活性炭纤维(ACF)上均存在含氧基团。在躲开反应器中对这些ACF与NO的反应产物进行了定量测定,发现NO脱除率与ACF含氧量和表面含氧基团的存在及分布有关。还考察了CO的存在对该反应的影响。  相似文献   

16.
利用重力沉降的原理研究了一种较低温度条件下安全有效的Hummers法制备氧化石墨.通过探究低中高温时间、高温温度和高锰酸钾剂量比等5个因素对石墨氧化程度的影响,采用新的除杂方法,最终得到较为简单合理的新Hummers法.实验证明,实验温度在45 ℃时就可制备出氧化比例较好的产物.  相似文献   

17.
Graphite oxide (GO)/polypyrrole (PPy) nanocomposites (GPYs) were synthesized using in situ polymerization.The effect of the feeding ratios of pyrrole and GO on the structure and electrochemical performances of GPYs was investigated.The structure was characterized via Fourier-transform infrared spectroscopy,scanning electron microscopy,transmission electron microscopy and X-ray diffraction.The electrochemical performance was characterized via cyclic voltammetry,galvanostatic charge-discharge and electrochemical impedance spectroscopy.The results indicate that the more pyrrole is added to GO (with GO concentrations of 20% and 50%),the more agglomeration of both PPy and GO layers occurs.This is detrimental to the capacitance utilization of PPy.When the feeding ratio of GO:pyrrole is 80:20,PPys with nanofibrils are dispersed homogenously in/on the exfoliated layer of GO and the conductivity is enhanced.The capacitance utilization of PPy in a composite with a GO concentration of 80% (383 F/g) is higher than that of pure PPy (201 F/g),which indicates the presence of a synergistic effect between GO and PPy.  相似文献   

18.
以0.10、0.15、0.18、0.30 mm 4种不同粒径的石墨为原料,采用密闭氧化、氨-水合胼还原法,经过2个控温阶段制备了10~20 μm大粒径氧化石墨(GO)与石墨烯,并通过正交实验、单因素实验优化了制备条件. 测定了GO与石墨烯的傅里叶红外光谱、拉曼光谱及热稳定性.用扫描电镜、X线衍射光谱、原子力显微镜测试了产品的结构与石墨烯片层厚度. 实验结果表明:石墨粒径越小,片层剥离程度越高, GO的产率、热稳定性也均有提高. 石墨烯在800 ℃下残炭率高于80%,剥离层厚度约为1 nm. 本实验研究为制备大粒径GO与石墨烯提供了一种可行的实验方法.  相似文献   

19.
偕胺肟纤维对活性黄K-6G染料的吸附性能研究   总被引:1,自引:0,他引:1  
以偕胺肟纤维(AOCF)为吸附材料,与Fe3+反应,制得偕胺肟-铁(Ⅲ)螫合纤维(AOCF-Fe(m)),继而用此纤维吸附水溶液活性黄K-6G染料,对其吸附工艺条件和吸附动力学进行了研究.研究结果表明,在温度为40℃、pH=2.0、反应时间为2 h的条件下,吸附效果最佳,饱和吸附量达593 mg/g;该吸附行为是单分子层吸附;吸附反应符合二级反应.  相似文献   

20.
木质素热解/炭化官能团演变与焦炭形成   总被引:3,自引:0,他引:3  
为了深入理解生物质热解/炭化过程,制备功能型焦炭,采用热重红外联用仪研究了木质素热解/炭化官能团演变与焦炭形成,并对所形成焦炭进行了导电性测试.实验结果表明:木质素热解/炭化过程分为4个阶段:200℃以下为自由水的脱除阶段;200~ 500℃为热解阶段,焦炭开始形成;500~900℃时焦炭中C-C键和C-H键进一步断裂,苯环大部分已被解链或芳香族化,形成无定形炭,在此阶段,焦炭的电阻率迅速下降,由986 Ω·cm减小到0.6 Ω·cm;900~1400℃时,碳碳双键几乎完全消失,焦炭内部结构重组,形成了一种介于无定型结构和石墨结构之间的新结构,电阻率达到0.2Ω·cm,导电性进一步增强.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号