首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
以十六烷基三甲基溴化铵(CTAB)和十二烷基硫酸钠(SDS)分子自组装形成的囊泡为模板, 用氨水溶液提供缓冲环境, 甲阶酚醛树脂为前驱体, 控制表面活性剂配比, 反应温度和时间不变, 通过改变搅拌速率得到纳米/微米级酚醛树脂多层中空球, 并利用X射线衍射仪(XRD)、 透射电子显微镜(TEM)、 扫描电子显微镜(SEM)、 比表面积和孔隙分析仪、 热重分析仪(TGA)对所得微球进行表征. 结果表明: 酚醛树脂中空纳米球的粒径为50~60 nm, 球壳厚度约为10 nm; 酚醛树脂中空微米球分为单室和多室两种形貌, 单室中空球粒径为2~5 μm, 多室中空球粒径可达10 μm, 球壳厚度约为500 nm; 两种形貌的酚醛树脂中空球的球壳均为多层周期结构.  相似文献   

2.
以十六烷基三甲基溴化铵(CTAB)和十二烷基硫酸钠(SDS)分子自组装形成的囊泡为模板, 用氨水溶液提供缓冲环境, 甲阶酚醛树脂为前驱体, 控制表面活性剂配比, 反应温度和时间不变, 通过改变搅拌速率得到纳米/微米级酚醛树脂多层中空球, 并利用X射线衍射仪(XRD)、 透射电子显微镜(TEM)、 扫描电子显微镜(SEM)、 比表面积和孔隙分析仪、 热重分析仪(TGA)对所得微球进行表征. 结果表明: 酚醛树脂中空纳米球的粒径为50~60 nm, 球壳厚度约为10 nm; 酚醛树脂中空微米球分为单室和多室两种形貌, 单室中空球粒径为2~5 μm, 多室中空球粒径可达10 μm, 球壳厚度约为500 nm; 两种形貌的酚醛树脂中空球的球壳均为多层周期结构.  相似文献   

3.
采用两步溶胶-凝胶法制备了单分散、球形、亚微米级、壳层厚度可调的核-壳结构SiO2@α-Fe2O3亚微米球.借助X-射线衍射仪(XRD)、扫描电子显微镜(SEM)和紫外可见光谱仪(UVS)对结果样品的纯度、结构、形貌、尺寸和光催化性能进行了表征,探讨了样品的形成机理和光催化机理.实验结果表明,制备的样品由亚微米级(平均粒径400nm)SiO2核和粒径约为30nm的壳通过羟基键合作用连接而成,并显示出很强的光催化性能.  相似文献   

4.
通过模板法制备中空SiO2/Fe3O4磁性微球,采用分散聚合法制备了大尺寸的聚苯乙烯微球作为模板,以界面沉积法制备了Fe3O4/PS复合粒子,溶胶凝胶法制备SiO2/Fe3O4/PS微球;经过高温煅烧使模板聚苯乙烯分解,得到中空磁性微球.通过透射电子显微镜、红外光谱仪、扫描电子显微镜、X射线衍射仪、震荡样品磁强计、物理吸附仪等仪器对中空SiO2/Fe3O4磁性微球进行了形貌和性能表征.结果表明:所制备的中空SiO2/Fe3O4磁性微球尺寸在700nm左右,大小均匀,有良好的分散性,并且中空磁性微球表面有孔,其孔径在16nm左右,具有较大的比表面积和孔容量.  相似文献   

5.
通过牺牲微米级PS模板原位合成方法制备微米级单分散中空SiO_2微球,着重研究反应温度(50,70℃)、TEOS用量(2,3,4 g)、氨水用量(1,2,3 mL)与MTC用量(0.2,0.4 g)等参数对中空微球的影响,获得微米级(1~5μm)、结构(孔径、壁厚等)可控的单分散中空SiO_2微球的最佳制备工艺,通过扫描电镜分析(SEM)、透射电镜分析(TEM)、红外光谱分析(FT-IR)、热失重分析(TGA)、氮吸附(BET)等测试手段表征了微球性能。  相似文献   

6.
分步溶胶-凝胶法制备核壳型玻璃珠/聚砜微球   总被引:1,自引:0,他引:1  
玻璃珠/聚砜核壳型微球可用于分离过程中的吸附介质和催化剂的载体.基于相转化原理,提出了向聚砜的二甲基甲酰胺(DMF)溶液中先加入乙醚再加入水的分步溶胶-凝胶法,制备出了核壳型玻璃珠/聚砜微球.通过扫描电子显微镜、红外光谱和X光电子能谱检测表明形成了单分散性良好、聚砜膜厚度为几μm的核壳型微球,且聚砜薄膜的表面致密.该制备方法的聚砜利用率高于80%,玻璃珠的利用率接近100%.乙醚加入量对微球性质影响较小,但其与DMF溶液的体积比要求大于4.5.实验结果表明,分步溶胶-凝胶过程是一种高效制备玻璃珠/聚砜核壳型微球的方法.  相似文献   

7.
采用基于PluronicF127胶束的软模板法,在中性、室温和无催化剂的温和环境下,制备得到中空SiO2纳米颗粒.利用透射电子显微镜(TEM)、动态光散射粒度分布测定仪(DLS)和傅里叶转换红外光谱仪(FT-IR)对所制备的中空SiO2纳米颗粒的形貌、粒径和官能团进行分析.结果表明:SiO2壳层成功在F127胶束疏水-亲水界面处形成,PEO在中空SiO2纳米颗粒表面可自由伸展,纳米颗粒的尺寸随F127浓度增加而减小,但分散性随F127浓度增加而增强.F127质量为15mg、四甲氧基硅烷为46μL时制备的中空SiO2纳米颗粒的平均粒径和内径分别为20nm和9.6nm,且具有更好的水溶性和单分散性.通过对样品的TEM照片统计分析发现,中空SiO2纳米颗粒的外径、内径和SiO2壳层厚度与F127浓度密切相关.  相似文献   

8.
摘要:采用磺化聚苯乙烯(Ps)微球为模板制备出了以Fe304-PANi(聚苯胺)为壳,PS为核的具有核壳结构多功能Fe304.PANi/PS复合微球.采用溶剂抽提溶解去除Ps核得到Fe304.PANi具有导电导磁双功能中空微球.中空微球空腔尺寸大小一致,约为190nm,壳层厚度约30nm.通过控制Ps模板磺化时间来同步控制微球空腔大小和微球壳层厚度.Fe304-PANi/PS复合微球及中空微球具有良好的导电性和超顺磁性.所制备的中空Fe304微球及中空Fe304-PANi微球对模拟污水浊度去除率分别达到84.2%及86.9%.  相似文献   

9.
用简单两步法制备ZnS/PbS核壳结构复合微球,采用SEM、EDS、TEM、XRD、FT-IR和固体紫外等测试手段对核壳结构复合微球样品进行性能表征,发现所得复合微球由ZnS核和PbS壳构成,其平均粒径约为8μm;而且具有中空结构的ZnS微球表面被很多细小的PbS颗粒包覆形成核壳结构。UV-vis表明ZnS/PbS核壳结构复合微球在紫外-可见光区都有良好的吸收,说明其在光电器件领域中将会有很好的发展前景。另外,还探讨了复合微球形成的机理。  相似文献   

10.
利用液滴微流控技术制备了单分散的微米级聚乙二醇(PEG)水凝胶微球。首先利用流动聚焦型微流控芯片产生单分散的水凝胶微液滴,然后经过紫外光原位引发聚合形成水凝胶微球,系统考察了PEG质量分数、表面活性剂加入量、连续相流速等影响因素,在优化的实验条件下得到了粒径为115μm、单分散性较好的PEG凝胶微球。  相似文献   

11.
采用一种简单和低成本的方法制备单分散二氧化硅包覆聚苯乙烯(PS/SiO2)核壳型纳米复合微球.首先在氨水的醇溶液中,将聚乙烯吡咯烷酮(PVP)通过乳液聚合为聚苯乙烯核心,再在核心表面使正硅酸四乙酯(TEOS)水解缩聚,从而在PS微球表面包裹一层SiO2外壳.研究了氨水的用量对PS/SiO2纳米复合微球尺寸和形态的影响,利用透射电子显微镜(TEM)和扫描电子显微镜(SEM)对样品的超微结构与形貌进行表征,并探讨了其形成机理.  相似文献   

12.
反相微乳液合成亲水性聚合物纳米微球   总被引:1,自引:0,他引:1  
利用反相微乳液一步法成功导合成磁性聚合物纳米微球,研究表明:Fe(Ⅱ)浓度对微乳液和胶乳的稳定有很大的影响,透射电镜(TEM)和动态光散射仪(DLS)结果说明微球粒径在100nm左右,均一性较好,SOT含量能控制微球粒径,振动探针式磁强仪(VSM)测定了不同比例的[Fe(Ⅱ)]/[Fe(Ⅲ)]所合成的聚合物微球的磁性,并发现温度对合成高磁饱和强度和超喘磁性起关键作用,合成的磁性聚合物微胶乳透明而且能稳定数个月。  相似文献   

13.
Aiming at improving the permeability of the pigment dyed fabrics,two kinds of hydrophilic polymers(polyvinyl pyrrolidone(PVP),and polyethylene glycol(PEG)were fed into the styrene-butyl acrylate(St-BuA)copolymer latex binder respectively to prepare films with macropores.The effects of the post-added polymers on the latex film formation process and film structures were studied and the performance of the dyed fabrics was evaluated.It was found that the drying process could still be divided into three stages even after the addition of PVP and PEG.And the water evaporation rate during the first and last stage remained the same as usual.However,after the addition of PVP,the onset of the second stage was delayed to high volume fraction,and PVP formed into spherical dispersion phase with 300 nm in diameter.It provided a great deal of interface between the latex polymer and the PVP phase,which led to an increase in the water evaporation rate during the second stage.A different case was found after the feeding of PEG.Firstly,the first stage ended at low volume fraction and a decreased evaporation rate was observed in the second stage.Secondly,the PEG dispersion appeared as finger-like structure in the transmission electron microscopy(TEM)images with 9μm in length.After rinsing,pores were found only in the films formerly containing PVP or PEG,and the shapes and the sizes were closely correlated with the initial morphologies of the PVP or PEG domains.However,the shade of color,the abrasion fastness,and the permeability of the dyed fabric were independent of the type of the post-added hydrophilic polymer.  相似文献   

14.
By means of distillation precipitation polymerization, the silica-hybrid particles with polyazobenzene shell (PAzo@SiO2) micro-spheres were prepared with 6-(4-methoxy-4′-oxy-azobenzene) hexyl methacrylate (Azo-M) as monomer, divinylbenzene (DVB) as cross-linker, and ~250 nm vinylated sol-gel silica particles as template. Hollow polyazobenzene microspheres were further developed after selective removal of the silica cores with HF solution. When the content of DVB related to Azo-M is 20 wt%, the acetonitrile is 200 mL, and the polymerization time is 4.5 h, the hollow PAzo microspheres with about 20 nm shell are successfully fabricated. These hollow PAzo microspheres have excellent reversible photoisomerization, and their first-order rate constant of trans-cis isomerization only decreases 11.8% compared with homopolymer of azobenzene (Homo-PAzo).  相似文献   

15.
Micron-sized, monodisperse, superparamagnetic, luminescent composite poly(glycidyl methacrylate) (PGMA) microspheres with functional amino-groups were successfully synthesized in this study. The process of preparation was as follows: preparation of monodisperse poly(glycidyl methacrylate) microspheres by dispersion polymerization method; modification of poly(glycidyl methacrylate) microspheres with ethylene diamine to form amino-groups; impregnation of iron ions (Fe^2+ and Fe^3+) inside the microspheres and subsequently precipitating them with ammonium hydroxide to form magnetite (Fe3O4) nanoparticles within the polymer microspheres; infusion of CdSe/CdS core-shell quantum dots (QDs) into magnetic polymer microspheres. Scanning electron microscopy (SEM) was used to characterize surface morphology and size distribution of composite microspheres. The average size of microspheres was 1.42 μm with a size variation of 3.8%. The composite microspheres were bright enough and easily observed using a conventional fluorescence microscope. The composite microspheres were easily separated from solution by magnetic decantation using a permanent magnet. The new multifunctional composite microspheres are promising to be used in a variety of bioanalyUcal assays involving luminescence detection and magnetic separation.  相似文献   

16.
根据岩芯孔喉基本计算公式,计算岩芯的平均孔喉直径,通过吸水膨胀后不同大小聚合物微球在岩芯中的封 堵效果,研究了聚合物微球大小与岩芯孔喉的匹配关系,确定了聚合物微球在岩芯中具有稳定封堵性能时微球粒径与 岩芯孔喉直径的比值范围。从聚合物微球吸水膨胀性能、剪切前后微球粒径变化、不同大小聚合物微球在岩芯中的封 堵效果、与岩芯匹配后的聚合物微球调剖作用对水驱采收率的影响几个方面,研究了聚合物微球大小与岩芯孔喉的匹 配关系,从而为聚合物微球调剖体系大小选择提供实验依据。研究表明,当聚合物微球粒径与岩芯孔喉直径比值在 0.33~1.50 时,聚合物微球可以在岩芯中形成稳定的封堵能力,当聚合物微球粒径与孔喉直径比值在1.20~1.50 时,聚 合物微球兼具良好的运移能力和封堵效果。  相似文献   

17.
以正硅酸乙酯为原料,采用控制凝聚法制备出173nm和297nm两种不同粒径的单分散二氧化硅微球乳液,并在一定湿度和温度下,利用乳液的单分散性,在表面张力的驱使下完成微球的自组装,从而得到三维有序的二氧化硅胶态晶体。扫描电镜显示:晶体呈面心立方结构,晶体表面至现出鲜艳的颜色,其波长与微球的直径相对应。  相似文献   

18.
利用正四甲氧基硅在微乳液介质中的水解反应合成新型银 -二氧化硅核 -壳型复合纳米粒子 .通过化学反应调控 ,直径为 5~ 1 0 nm的金属银纳米粒子可以以单核或多核形式嵌入并分布于球型二氧化硅粒子中 .透射电子显微镜照片表明 ,该复合粒子具有高度均匀的粒径分布 .  相似文献   

19.
报道了一种液相芯片的微球敏感元件载体的制备方法.利用分散聚合法,以苯乙烯(St)为聚合单体,偶氮二异丁腈(AIBN)为引发剂,聚乙烯吡咯烷酮(PVP)为稳定剂,乙醇和水作为分散介质,合成了微米级单分散性聚苯乙烯微球,详细探讨了单体浓度、引发剂、稳定剂的用量对微球的粒径及单分散性的影响,并对微球的表面形貌进行了表征.结果表明,制备的聚苯乙烯微球作为液相芯片的敏感元件载体,具有良好的单分散性,粒径约2.2 μm,并且表面光滑致密,适合下一步在其表面引入羧基、氨基等功能基团以进行表面化学与生物活化,从而制成液相芯片的敏感元件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号