首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
直线上一类分形集的Hausdorff 测度   总被引:2,自引:0,他引:2  
给出了一个明晰的计算公式,用以计算直线一类分形集的Hausdorff测定的精确值,并通过自相似压缩映射的某些特性,用以刻画分形的凸包。  相似文献   

2.
研究了自相似分形的Hausdorf测度的上界估计问题,得到以下结果:设S是Sierpinski垫,s=log23是S的Hausdorf维数,对任一x,0<x<12,将x表为x=12i1+12i2+…,i1<i2<…,i1,i2,…∈N.则S的Hausdorf测度Hs(S)满足Hs(S)≤11-32∞j=12j3ij(1-x)s.取x=123+(124+126+…+122k+…),k=2,3,….则得到Hs(S)<0.8701.记H(x)=11-32∞j=12j3ij(1-x)s则inf0<x<12{H(x)}≥min{H(i2n)(2n-i-12n-1)S:i=1,2,…,2n-1-1}.取n=20,上机运算得inf0<x<12{H(x)}>0.8700.由此可知0.8701是本文这种方法估计Sierpinski垫的Hausdorf测度的相当好的上界.  相似文献   

3.
利用满足开集条件的自相似分形的性质,得到了一个特殊分形Hausdorff测度的上界估计公式.由此公式以及网测度分别对它的Hausdorff测度的上界进行了估计,并估计了它的Hausdorff测度的下界.  相似文献   

4.
利用满足开集条件的自相似分形的性质,得到一个特殊分形Hausdorff测度的上界估计公式。由此公式,对它的Hausdorff测度的上界进行了估计,并用两种方法估计了它的Hausdorff测度的下界。  相似文献   

5.
一个特殊自相似分形集的Hausdorff测度的上界估计   总被引:3,自引:0,他引:3  
利用自相似分形的性质,得到了一个特殊分形Haudorff测度的上界估计公式.并应用此公式,通过构造特殊覆盖,得到它的Hausdorff测度的一个较好上界。  相似文献   

6.
一类广义Cantor集的Hausdorff测度   总被引:3,自引:0,他引:3       下载免费PDF全文
考虑满足开集条件的线性迭代系统 Si (x) = aix + ci , i = 1 , …, m 产生的广义 Cantor 集在m = 2 时, 得到几个不等式, 并由此给出这类广义 Cantor 集的 Hausdorff 测度的精确值: Hs ( E)= | E|s  相似文献   

7.
利用自然覆盖类,得到了一类整迭代函数系{Sj}j=1^m(满足:Sj(x)=A^-1一(x+dj),dj∈R^d其中A是元素为整数的相似扩张矩阵即A=P^-1R,R是标准正交矩阵,0〈P〈1,d∈R^d是整数向量)生成的自相似集的Hausdorff测度上界的估计。  相似文献   

8.
三分Cantor集自乘积的Hausdorff测度的估计   总被引:1,自引:0,他引:1  
借助于部分估计原理和质量分布原理 ,证明了三分Cantor集C自乘积集C×C的Hausdorff测度满足1 4832 9≤Hlog43 (C×C)≤ 1 5 0 2 88。  相似文献   

9.
一类广义Cantor集的Hausdorff测度(Ⅱ)   总被引:4,自引:0,他引:4       下载免费PDF全文
考虑满足开集条件的线性迭代系统Si(x) =aix+bi,i=1,… ,m 产生的广义Cantor集 .在 m =3时 ,得到几个不等式 ,并由此给出这类广义Cantor集的Hausdorff测度的精确值Hα(E) =E α 的充要条件  相似文献   

10.
引进泛Sierpinski地毯的概念,设S^m为压缩比为1/m(m≥4)的泛Sierpinski地毯,Sn为S^m的第n级基本长方形的集合,U为平面点集,U的直径│U│>0,αn(U)表示Sn中与U相交的基本正方形的个数。证明了对充分大的n有αn(U)/4^n(a^2 b^2)^s/2≤│U│^s(s=logm4),从而证明了S^m的s维Hausdorff测度H^s(S^m)=(a^2 b^2)^s/2。并对α1(U)=2,3,4的几种情形进行了讨论。  相似文献   

11.
文章证明了三分Cantor集C的自乘积C×C的Hausdorff测度的上限满足,Hlog34(C×C)1.495901改进了现有文献的有关结果.  相似文献   

12.
分形集的两种密度定义   总被引:3,自引:0,他引:3  
给出了分形集的两种密度定义,讨论了它们的关系及性质。通过Vitali覆盖定理,证明了Hausdorff凸密度定理。  相似文献   

13.
研究分形集的中心任务是计算或估计分形集的Hausdorff维数与Hausdorff测度。本文研究Sierpinski垫片的Hausdorff测度的上界估计,利用部分估计的方法,归纳出了关于Sierpinski垫片的某种部分覆盖所包含的小三角形的个数以及这种覆盖的直径的规律,得到了Sierpinski垫片的Hausdorff测度的一个更好的上界估计值Hs(S)≤1377811/09286×(2431/3072)s≈0.870031853。  相似文献   

14.
The estimate of Hausdorff measure H' (F) of Sierpinski carpet F with Hausdorff dimension s =logS/log3 is derived as Hs(F)≤55102s--864855992=1.089147….  相似文献   

15.
Hausdorff测度的计算与估计   总被引:2,自引:0,他引:2  
把计算Hausdorff 测度转化成极限过程, 对一般分形得到1 个一般模型, 而对自相似集则得到1 个约化模型. 作为应用, 得到Sierpinski 垫片的Hausdorff 测度的较好上限  相似文献   

16.
一类推广的Cantor集的Hausdorff测度   总被引:6,自引:0,他引:6  
利用Hausdorf测度的定义和1个新技巧证明了一类推广的Cantor集E的Hausdorf测度为1.进而得到更广泛的一类推广Cantor集F的Hausdorf测度的精确值  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号