首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为探讨Ca的掺杂对LiNi1/3Co1/3Mn1/3O2材料结构和电性能的影响,以草酸为沉淀剂,以不同含量Ca对LiNi1/3Co1/3Mn1/3O2进行掺杂改性,并通过X射线衍射(XRD)对产品进行表征,探讨了不同Ca含量样品的电化学性能.结果表明:大量Ca掺杂生成明显CaO杂相,而少量Ca掺杂则能顺利进入材料晶格之中.随着Ca掺入,晶体类型不变,但c轴略收缩,形成更紧密的结构. 充放电显示Ca在低倍率(2.5~4.3 V,0.5 C)时,能一定程度提高材料的循环性能;但在高倍率(2.5~4.3 V,5 C)时,能明显提高容量和循环性能.充放电曲线同时显示未掺杂的材料高倍率下极化严重,放电平台严重降低;而Ca掺杂的材料极化状况则不明显,说明Ca掺杂能抑制极化并提高电化学性能.  相似文献   

2.
为探讨Li Ni_(1/3)Co_(1/3)Mn_(1/3)O_2更加方便的合成过程,研究了草酸、氢氧化物的共沉淀法,通过XRD表征了不同煅烧温度下材料结构,并探讨了其电化学性能.结果表明:锂离子不能与过渡金属离子通过草酸共沉淀,须进行二次添加,在850℃煅烧温度下具有最佳的层状结构.充放电性能测试(2.5~4.3 V,70 m A·g~(-1))表明该温度下制备的材料具有最高的初始容量(143.4 m Ah·g~(-1))和较好的循环性能.用草酸盐、碳酸盐、氢氧化物前驱体均能制备出结构良好的正极材料,草酸沉淀法制备的材料容量与氢氧化物沉淀法相当,但容量保持率更高.  相似文献   

3.
采用沉淀法合成LiMn2-xAlxO4x=0.01,0.05,0.10,0.20),pH的范围为10.5~10.6,搅拌速度为350 r/min,水浴温度为55℃,分两次烧结.首次煅烧温度为680℃,保温时间为18 h;第二次煅烧温度为850℃,保温时间为18 h.利用X射线衍射、扫描电子显微镜和电化学方法测试最终产物.测试结果表明:Al3+的掺入有效地改善了LiMn2O4的高温循环性能,使其高温循环容量衰减得到了有效的抑制,尤其当Al3+的掺入量为0.05时,有比其他掺杂量更优的性能.  相似文献   

4.
O3型NaNi1/3Fe1/3Mn1/3O2因其成本低、理论比容量高和易于合成的优点而被认为是最具前景的钠离子电池正极材料之一,然而其循环稳定性差仍然是一个需要解决的主要问题。研究将Ce取代样品晶格中的Mn,发现,较大半径的Ce4+在结构中起到支撑作用,可以阻碍样品在充放电过程中过渡金属层的层间滑移,增强结构稳定性,并提供更宽的Na+传输通道,提高材料的Na+扩散效率、改善材料在充放电过程中的结构可逆性,实现循环稳定性和倍率性能的提高。经过改性的NaNi1/3Fe1/3Mn1/3-0.0075Ce0.0075O2,当电压为2.0~4.2 V时,在0.2 C倍率下表现出可观的可逆比容量,达到155.9 mA·h/g,在1.0 C倍率下循环100圈后的容量保持率可达73.5%。  相似文献   

5.
O3型NaNi0.5Mn0.5O2拥有高理论比容量且易于制备,是商业钠离子(Na+)电池的首选正极材料之一,但其循环稳定性仍面临挑战。利用Bi对NaNi0.5Mn0.5O2进行改性。研究发现,Bi的引入可以在晶粒生长过程中通过调节表面能实现晶粒细化,并且Bi的掺杂增加了层状正极材料的晶胞参数,为Na+提供了宽的扩散通道,提高了Na+的扩散能力,优化了Na+在脱嵌过程中的可逆性。改性后的NaNi0.495Mn0.5Bi0.005O2实现了在2.0~4.0 V的电势区间内0.2 C倍率下的可逆容量为138.1 mAh/g,在5 C倍率下循环100圈后容量保持率可以达到97%。  相似文献   

6.
为研究离子掺杂对锂离子正极材料LiNi1/3Co1/3Mn1/3O2的影响,采用氢氧化物共沉淀法制备了Ti4+掺杂改性的锂离子正极材料LiNi1/3-1/40Co1/3Mn1/3Ti1/40O2、LiNi1/3-Co1/3-1/40Mn1/3Ti1/40O2和LiNi1/3Co1/3Mn1/3-1/40Ti1/40O2,并运用X射线衍射仪和扫描电子显微镜对Ti掺杂改性后正极材料的晶型和微观结构进行表征,通过高精度电池性能检测系统对正极材料的电化学性能进行检测.结果表明:Ti分别取代Ni、Co和Mn对三元复合正极材料进行掺杂改性后,改性材料都保持典型的α-NaFeO2层状结构,且晶型良好;LiNi1/3-Co1/3Mn1/3-1/40Ti1/40O2轮廓最分明,且形貌均一;3种改性材料的电化学性能均有一定程度的提高,其中LiNi1/3Co1/3Mn1/3-1/40Ti1/40O2提高最为明显,在0.1 C、1.0 C和2.0 C倍率下其首次放电比容量分别为145.35、140.79和125.60 mA.h/g,1.0 C倍率下循环30次后的容量保持率为88.06%.  相似文献   

7.
以水热合成的钴掺杂Mn3O4作为模板,通过固相反应制备尖晶石LiMn2O4.XRD谱图和SEM照片显示制备的LiMn2O4具有岩石状结构并呈现良好的结晶性,同时Co的引入能够引起LiMn2O4晶格的收缩.作为锂离子电池正极材料,Co含量的增加能够提高循环稳定性但降低材料放电比容量,3%Co掺杂的LiMn2O4在0.5 ...  相似文献   

8.
纳米材料具有独特的物理和化学性质。纳米技术的应用为开发高能量和高功率的锂离子电池多元化发展提供了方向,成为锂离子电池电极材料发展的重要途径。本文介绍了纳米级锂离子电池正极材料的各种合成方法及电化学性能,如:固相法喷雾干燥法、微波合成法、溶胶凝胶法、冷冻干燥法等,指出电极材料纳米化应用中的问题并给出建议,展望了纳米正极材料实用化的美好前景。  相似文献   

9.
以CrF3为掺杂原料,采用高温固相制备了锂离子电池正极材料尖晶石LiMn2-xCrxO4-3xF3x.采用XRD、SEM和充放电能实验对其结构和性能进行了表征.实验结果表明,阴阳离子共掺杂对尖晶石LiMn2O4的循环性能有一定的改善.其中LiMn2-xCrxO4-3xF3x(x=0.10)室温下循环20次后放电比容量衰减率为首次容量(120.58 mAh/g)的4.73%.  相似文献   

10.
通过固相法合成了LiFePO4 /聚并苯(PAS)复合材料.纯的LiFePO4电导率仅为(0.1~1)×10-9 S/cm,合成LiFePO4/PAs复合材料电导率为2.0 S/cm,复合材料的电导率提高了10个数量级.LiFePO4/PAS复合材料具有优异的电化学性能,在室温1C倍率下首次放电容量为140 mA·h/g,经过200次循环后容量仍保持最初容量的97.14%.说明通过包覆PAS材料极大地提高了LiFePO4的大电流充、放电容量和循环性能.  相似文献   

11.
以固相合成法制备了铁酸铋(BiFeO3,简称BFO)掺杂的铌铟酸铅-铌镁酸铅-钛酸铅(Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3,简称PIN-PMN-PT)多铁性陶瓷材料,X射线衍射(XRD)测试结果表明:样品具有钙钛矿结构,电滞回线显示其铁电性良好,剩余极化值(Pr)可达18 μC·cm-2.由于BiFeO3掺杂后,样品电矩减小,氧空位增多,使其铁电畴翻转困难,样品的电性能略有下降,但是其磁性能随BiFeO3掺入量的增加而逐渐增强,且样品居里温度(Tm)为200℃左右.该材料在电磁学领域有望成为具有应用前景的多铁性材料.  相似文献   

12.
采用高温固相浸渍法合成了多元复合掺杂尖晶石型锰酸锂Li 1.02MxMn 2-xQyO 4-y正极材料.XRD表征合成的产物均为良好的尖晶石型结构材料;SEM表明所合成的产物颗粒均匀且有良好的粒径分布.以该物质作为锂离子电池的正极材料组装成扣式电池,经充放电循环测试可知:多元素掺杂的尖晶石型锰酸锂正极材料Li 1.02CoaCrbLacMn 2-a-b-cFyO 4-y较富锂尖晶石和单元素Co、Cr掺杂的正极材料能够更好地抑制电池的可逆容量在充放电过程中的衰减,循环性能有了很大改善,表现出很好的电化学可逆特性,80次循环后放电容量仍能保持94.5%以上;特别是高温(55 ℃)性能更加突出,40次循环后放电容量仍能保持102.1mA.h/g(91.5%)以上.作为锂离子电池的正极材料,该复合掺杂材料是众多取代钴酸锂材料中最具竞争力的材料之一,也有望成为锂离子动力电池的正极材料.  相似文献   

13.
Na离子电池由于其低成本和丰富的Na资源储备,已成为电能存储和低速电动汽车中最有前途的候选设备。正极材料是Na离子电池的关键,对电化学性能具有显著影响。系统地总结了现有的Na离子电池正极材料,有过渡金属氧化物类、聚阴离子类、普鲁士蓝类和有机分子聚合物类等材料。目前,这些正极材料存在两个缺点:Na离子的半径比Li离子的大,在离子脱嵌过程中会对材料的结构造成严重影响,进而导致体积膨胀和容量衰减;动态过程缓慢,导致充放电倍率表现不佳。总结了用以提高正极材料电化学性能的掺杂/替代和涂覆等改性方法,为以后的Na离子电池改性和正极材料的选择提供了研究方向。  相似文献   

14.
球形LiNi1/3Co1/3Mn1/3O2表面非均匀成核法包覆Al2O3的研究   总被引:1,自引:0,他引:1  
为了提高LiNi1/3Co1/3Mn1/3O2的电化学性能,采用非均匀成核法在球形LiNi1/3Co1/3Mn1/3O2表面包敷Al2O3。采用SEM及电化学性能测试对所制备材料的形貌和电化学性能进行表征。研究结果表明:球形LiNi1/3Co1/3Mn1/3O2颗粒由粒径为500~600 nm的一次粒子团聚而成,包敷后的球形LiNi1/3Co1/3Mn1/3O2表面形成了致密的无定形Al2O3包敷层;包覆Al2O3能明显抑制LiNi1/3Co1/3Mn1/3O2在循环过程中的氧化/还原峰电流的衰减,随着Al2O3包敷量的增加,材料的氧化/还原峰的峰电流减小,适量地包敷Al2O3可有效提高材料的可逆性;当Al2O3的包敷量为0.5%时,材料表现出优异的电化学性能,在2.7~4.6 V高电压和1C倍率条件下,材料的首次放电容量为172 (mA·h)/g,50次循环后材料的容量保持率仍有93%,而没有包敷的LiNi1/3Co1/3Mn1/3O2容量略低,首次放电容量为170 (mA·h)/g,而且容量衰减较快,容量保持率仅为84%。此外,包敷处理还可以有效提高LiNi1/3Co1/3Mn1/3O2材料在电解液中的热稳定性,以包敷材料所制备的电池其高温储存性能明显提高。  相似文献   

15.
采用高温固相浸渍法合成了多元复合掺杂尖品晶石型锰酸锂Li1.02MxMn2-xQyO4-y正极材料。XRD表征合成的产物均为良好的尖品晶石型结构材料;SEM表明所合成的产物颗粒均匀且有良好的粒径分布。以该物质作为锂离子电池的正极材料组装成扣式电池,经充放电循环测试可知:多元素掺杂的尖晶石型锰酸钾正极材料Li1.02CoaCrbLacMn2-a-b-cFyO4-y较富锂尖,晶石和单元Co、Cr掺杂的正极做材料能够更好地抑制电池的可逆容量在充放电过程中的衰减,循环性能有了很大改善,表现出很好的电化学可逆特性,80次循环后放电容量仍能保持94.5%以上;特别是高温(55℃)性能更加突出,40次循环后放电容量仍能保持102.1mA.h/g(91.5%)以上。作为钾离子电池的正极材料,恢复合掺杂材料是众多取代钻酸锂材料中最具竞争力的材料之一,也有望成为锂离子动力电池的正极材料.  相似文献   

16.
新一代弛豫铁电薄膜Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3(PIMNT)因兼具优异的电学性能与高的相变温度,在国内外获得广泛关注.为了探究不同薄膜厚度对PIMNT薄膜的结构及电学性能的影响,通过溶胶凝胶法制备了150 nm~1μm不同厚度的PIMNT薄膜,对其形貌结构以及电学性能进行了对比研究,在此基础上进一步研究了极化对其电学性能的影响.实验结果表明:随着厚度的增加,薄膜介电常数先增加后略有降低,剩余极化强度先增大后减小,矫顽场逐渐增大;在极化电压为18 V、极化温度和时间分别为100℃和5 min时,1μm厚度PIMNT薄膜的介电常数和损耗在100 Hz下分别为1 009和0.022,室温下的热释电系数达6.85×10-4C·m-2·K-1,是目前主流的锆钛酸铅(PZT)薄膜的3倍左右.  相似文献   

17.
为了检测电芬顿体系下DNA的损伤,先采用石墨烯制备了一种致密的rGO/Fe3O4复合材料;再将复合材料和DNA修饰到玻碳电极上,利用电化学还原作用释放游离态Fe2+,并加入H2O2形成电芬顿体系;最后构建了一种检测电芬顿体系下DNA损伤的新型电化学生物传感器。检测结果表明,检测DNA损伤的最佳时间为30 min,最佳pH值为7.0。  相似文献   

18.
通过采用沉淀法在碳气凝胶表面负载金属氧化物三氧化二锰,制备得到Mn_2O_3/CRF复合材料。采用X射线衍射及电镜扫描等技术对所制备的复合材料进行结构形貌表征。实验结果发现碳气凝胶具有多重片层结构且孔隙发达。通过调节锰盐的含量考察三氧化二锰负载量对复合材料电化学性能的影响作用。采用循环伏安法及充放电测试对材料的电化学性能进行测试,结果表明Mn_2O_3/CRF复合材料具有良好的电容性及较好的可逆性。当Mn_2O_3含量达15%时复合材料的比电容最大,可达118.5 F/g。通过充放电测试1000次后发现该电极的比电容依然能够保持在一稳定值上,具有较好的稳定性。  相似文献   

19.
以核壳结构复合而成的催化剂,在催化反应中常表现出较高的整体活性、大的比表面积、优异的择形催化效果和良好的热稳定性.部分催化载体因具有优异的择形效果和结构稳定性,在多元复合核壳催化剂的设计中也占据了一定的地位.本文主要介绍了几种常用催化剂载体(Al_2O_3、SiO_2、ZSM-5)参与复合的核壳催化剂制备与应用的概况.  相似文献   

20.
采用溶胶-凝胶法制备(CoFe2O4x/(SiO21-x纳米复合材料. 利用X射线衍射(XRD)和振动样品磁强计(VSM)研究样品结构、 晶粒尺寸及磁性. 结果表明, 随SiO2含量增加, 样品的晶粒尺寸减小, 比饱和磁化强度和矫顽力降低.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号