首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
一种二阶补偿的CMOS带隙基准电压源   总被引:4,自引:0,他引:4  
提出了一种通过沟道长度调制效应进行二阶温度曲率补偿的CMOS带隙基准电压源,并分析了这种结构实现二阶温度曲率补偿成立的条件。采用0.35 μm标准CMOS工艺库,在Cadence环境下进行仿真,在-50°~+120℃温度范围内,一阶曲率补偿的温度系数为9.5 ppm/℃,而运用二阶曲率补偿后该基准电压源具有2.7 ppm/℃的低温度系数。  相似文献   

2.
本文基于Brokaw基准电压源结构,设计了一种二阶温度补偿的带隙基准源。采用UMC 0.6um BCD工艺,实现-40100℃的温度范围下,相对温度系数为3.53ppm/℃。  相似文献   

3.
一种新的CMOS带隙基准电压源设计   总被引:2,自引:0,他引:2  
设计了一种新的CMOS带隙基准电压源.通过采用差异电阻间温度系数的不同进行曲率补偿,利用运算放大器进行内部负反馈,设计出结构简单、低温漂、高电源抑制比的CMOS带隙基准电压源.仿真结果表明,在VDD=2 V时,电路具有4.5×10-6V/℃的温度特性和57 dB的直流电源抑制比,整个电路消耗电源电流仅为13μA.  相似文献   

4.
为提高带隙基准电压源的温度特性,采用Buck电压转移单元产生的正温度系数对VBE的负温度系数进行高阶曲率补偿.同时使用共源共栅结构(Cascode)提高电源抑制比(PSRR).电路采用0.5 μm CMOS工艺实现,在5 V电源电压下,基准输出电压为996.72 mV,温度范围在-25~125 ℃时电路的温漂系数为1.514 ppm/℃;当电源电压在2.5~5.5 V变化时,电压调整率为0.4 mV/V,PSRR达到59.35 dB.  相似文献   

5.
提出一种新型的芯片内基准电压源的设计方案,基准电压源是当代数模混合集成电路以及射频集成电路中极为重要的组成部分。为满足大规模低压CMOS集成电路中高精度比较器、数模转换器、高灵敏RF等电路对基准电压源的苛刻需要,芯片内部基准电压源大部分采用基准带隙电压源。研究并设计了一种低功耗、超低温度系数和较高的电源抑制比的高性能低压CMOS带隙基准电压源。其综合了一级温度补偿、电流反馈技术、偏置电路温度补偿技术、RC相位裕度补偿技术。该电路采用台积电(TSMC)0.18μm工艺,并利用Specture进行仿真,仿真结果表明了该设计方案的合理性以及可行性,适用于在低电压下电源抑制比较高的低功耗领域应用。  相似文献   

6.
随着片上系统的发展,带隙基准源精度和功耗的要求也越来越高.目前的高阶温度补偿方法在工艺兼容、设计复杂度和功耗上还存在一定的局限性.本文推导了一个新颖的电流模带隙基准电路在饱和区工作时的温度特性,并结合双带隙结构在输出支路上采用电流比例相减的方式实现有效的曲率补偿,从而实现了一个新颖的双带隙结构CMOS带隙基准源.在GSMC 0.18μm工艺下,设计的CMOS带隙基准源版图面积为0.066mm~2.蒙特卡罗后仿真的结果表明,在-40~125℃温度范围内平均温度系数为14.27ppm/℃;在27℃时基准电压平均值为1.201V,标准偏差变化仅为33.813mV(2.82%);在3.3V工作电压下,静态电流平均为9.865μA,电源抑制为-37.21dB.本文设计的带隙基准源具有高精度、低功耗、结构简单的特点,是片上系统的良好选择.  相似文献   

7.
在传统电流求和模式带隙基准电压源的基础上进行改进,设计了一种简单的三阶曲率补偿带隙基准电压源。该基准源由启动电路、低压高增益两级运算放大器、基准核心电路和高阶曲率补偿电路组成。在低温段,通过PMOS管进行二阶补偿;在高温段,通过PTAT2电流进行三阶补偿。基于CSMC 0.35μm CMOS工艺,采用Cadence软件对设计电路进行仿真分析。结果表明,在-40~125℃温度范围内,5 V电源电压下,基准源输出电压为1.226V,输出电压变化范围为0.51mV,基准源的温度系数为2.5×10-6/℃,低频时的电源抑制比为-67 dB。  相似文献   

8.
为降低传统双极结型晶体管(Bipolar Junction Transistor, BJT)型带隙基准源温度系数高的问题,提出了一种带有高阶曲率补偿的带隙基准电压源,极大降低了带隙基准源的温度系数.设计基于传统BJT型带隙基准电路,采用高阶曲率补偿电路对温度系数进行优化,并采用折叠式cascode运算放大器和自偏置cascode电流镜对输入电压范围进行优化.设计的带隙基准源具有低温度系数、高电源电压抑制比、结构简单的优点,是各类片上系统的优良选择.  相似文献   

9.
设计了低温度系数、高电源抑制比BiCMOS带隙基准电压发生器电路.综合了带隙电压的双极型带隙基准电路和与电源电压无关的电流镜的优点.电流镜用作运放,它的输出作为驱动的同时还作为带隙基准电路的偏置电路.使用0.6μm双层多晶硅n-well BiCMOS工艺模型,利用Spectre工具对其仿真,结果显示当温度和电源电压变化范围分别为-45~85℃和4.5~5.5 V时,输出基准电压变化1 mV和0.6 mV;温度系数为16×10-6/℃;低频电源抑制比达到75 dB.电路在5 V电源电压下工作电流小于25μA.该电路适用于对精度要求高、温度系数低的锂离子电池充电器电路.  相似文献   

10.
基于CSMC的0.5μm CMOS工艺库模型,设计了一种具有良好性能的CMOS带隙基准电压源电路,并且利用Cadence公司的Spectre仿真工具对电路进行了仿真。所设计电路产生的基准电压约为1.14 V,在-40℃到100℃的温度范围内所得到的温度系数为4.6 ppm/℃,电源抑制比在低频时为-107 dB。  相似文献   

11.
基于0.35μm CSMC(central semiconductor manufacturing corporation)工艺设计,并流片了一款典型的带隙基准电压源芯片,可输出不随温度变化的高精度基准电压。电路包括核心电路、运算放大器和启动电路。芯片在3.3V供电电压,-40~80℃的温度范围内进行测试,结果显示输出电压波动范围为1.212 8~1.217 5V,温度系数为3.22×10-5/℃。电路的版图面积为135μm×236μm,芯片大小为1mm×1mm。  相似文献   

12.
设计了一种采用前调整器的高电源抑制比的CMOS带隙基准电压源.基于CSMC 0.5 μm标准CMOS工艺,分别对有前调整器与没有前调整器的CMOS带隙基准电压源进行了设计与仿真验证.仿真结果显示,采用前调整器的带隙基准在100 Hz、1 kHz、100 kHz处分别获得了-117.3 dB、-106.2 dB、-66.2 dB的高电源抑制比,而没有采用前调整器的CMOS带隙基准在100 Hz、1 kHz、100 kHz处仅分别获得了-81.8、-80.1、-44.9 dB的电源抑制比;在-15 ~90℃范围内,采用前调整器的带隙基准的温度系数为6.39 ppm/℃;当电源电压在2.2 ~8 V变化时,采用调整器的带隙基准的输出电压变化仅9.73μV.  相似文献   

13.
典型的帶隙基准电压源电路是由CMOS工艺产生的具有负温度系数的寄生横向BJT的发射结电压VEB和具有正温度系数的热电压Vt相补偿产生零温度系数的基准帶隙电压源.但是VEB与温度不是线性关系, 因此VREF需要被校正.本文介绍了一种高精度自偏置多段二次曲率补偿的CMOS帶隙基准电压源.采用0.5 μm CMOS工艺、工作电压为3.3 V,该芯片室温下功耗为94 μW.设计在0 ℃~75 ℃有效温度系数达到了0.7 ppm/℃.  相似文献   

14.
基于CSMC 0.5 μm CMOS工艺,采用CMOS技术,设计一种高性能的带隙基准电压源.带隙基准电压源输出电压经过电平转换电路,反馈回带隙基准电压源中的运算放大器,可以获得良好的电源特性和带负载能力.采用可修调电阻阵列,精确地控制温度系数.仿真结果表明:在5 V电源电压下,温度系数为8.28×10-6/℃,低频电源抑制比为83 dB.  相似文献   

15.
给出一款带曲率补偿的CMOS带隙基准源电路,该电路利用双极性晶体管电流增益β与温度的指数关系对带隙基准曲率进行补偿,以简单的电路结构获得低的温度系数.电路采用CSMC0.5μm 2P3M mixed signalCMOS工艺设计,Cadence Spectre仿真结果显示,在3.6V的电源电压、-40~85℃范围内,基准源的温度系数为5.0×10-6/℃.  相似文献   

16.
普通的一阶补偿带隙基准因忽略了VBE的高阶非线性项,其温度系数一般在20×10-6~30×10-6/℃,不能满足高精度系统的设计要求,因此为了得到温度系数更好的基准电压,需要对带隙基准中VBE的高阶项进行补偿。文章利用工作在亚阈值区MOS管的I-V指数特性,分别对低温及高温条件下VBE的高阶非线性项进行了补偿,从而实现了高精度基准电压。  相似文献   

17.
在一阶线性补偿基准非线性温度特性分析基础上,提出了利用基准电路内部可控非线性失调电压实现高阶补偿的方法,即利用3路互偏结构代替传统基准电路中的2路自偏置结构,在宽温度范围内,理想状态下的基准温度系数相比一阶线性补偿明显降低.与其他类型的分段高阶补偿相比,基于失配补偿的带隙基准不仅结构简单,而且工艺稳定性更好.基于CSMC 0.18μmCMOS工艺完成了该基准电路的MPW验证,在-20~120℃温度范围内,基准温度系数的测试结果最低为6.2×10-6/℃.基于理论与实测结果误差产生原因的分析,提出了电阻修调以及面积功耗折中方面的改进措施.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号