首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
车牌检测作为车牌识别系统中的重要环节,直接影响着车牌识别的准确度.为提高车牌的检测率和检测速度,提出了一种基于HSV颜色模型和多分块局部二值模式(MB_LBP)特征的级联Adaboost车牌检测方法.首先将车牌图像由RGB颜色空间转换到HSV颜色空间,统计蓝色像素占车牌总像素的比例,来构建第一层强分类器;其次对车牌字符样本提取MB_LBP特征,利用Adaboost分类器训练方法进行特征选择及分类器训练,最后利用Cascade结构检测法形成一种新的车牌检测算法.实验表明,本文算法有效的提高了车牌检测率和检测速度.  相似文献   

2.
Adaboost是一个构建精确分类器的学习算法,在目标检测领域有着广泛的应用。OpenCV是Intel开源计算机视觉库。该文给出了在OpenCV上利用Adaboost算法,实现车辆车牌检测的完整实验过程,包括样本的建立、训练级联分类器、以及利用训好的分类器进行目标检测。  相似文献   

3.
研究基于Adaboost cascade算法的车牌检测技术,针对收费站车辆照片,选用局部矩形特征,利用cascade算法得到了98 %的识别率,误识对象一般都集中在真实目标附近,从而验证了方法的可行性.  相似文献   

4.
文章提出了一种基于纹理特征和颜色特征的车牌定位算法.算法首先利用车牌的纹理特征对车牌进行了初步定位,其中主要有图像预处理、边缘检测、数学形态学处理等步骤.最后利用车牌区域的颜色特征对车牌区域进行精确定位,主要包括空间转换、边界确定等步骤.对80张相片进行测试的结果表明,该方法准确率高、速度快.  相似文献   

5.
针对车牌自动识别中车牌定位问题,提出了一种基于颜色信息的车牌定位算法。该算法基于HSV颜色模型,对车牌图像进行颜色分割找出候选车牌区域,然后利用车牌自身的两种颜色特征剔除伪车牌,最终正确定位出车牌,实验证明该算法的正确性和可行性。  相似文献   

6.
介绍了车牌定位常用的几种算法,并比较了各自的优缺点,然后提出了基于特征的车牌定位算法,借助统计跳变次数粗定位出车牌的上下边界.在此基础上,精确定位出车牌的左右边界.为了提高定位效率,对车牌图像进行了预处理和倾斜校正.实验结果表明,算法具有良好的抗干扰能力、简单快速、准确性高.  相似文献   

7.
车牌定位算法的研究   总被引:1,自引:0,他引:1  
通过比较多种车牌定位的方法,提出了一种基于车牌纹理及颜色特征的综合车牌定位方法.把车牌定位分为两步进行,首先对车牌进行初定位,然后再精确定位车牌区域.  相似文献   

8.
针对传统车牌定位算法对车牌图像质量要求较高、鲁棒性较差、准确率较低等不足,提出了一种基于尺度不变特征(SIFT)特征提取的车牌定位新方法.它利用车牌中汉字字符的局部特征属性,以SIFT特征提取方法进行抽取,并用之构建特征模板库,然后把待识别车牌图像的SIFT特征与之相匹配,用RANSAC算法剔除误匹配点后,便得到仿射变换矩阵,从而实现对车牌较准确的初定位和初倾斜校正.进一步对提取的车牌区域图像二值化,用Radon变换求得倾斜角度后,可生成精确的仿射变换矩阵,并实现对车牌的精确定位和倾斜校正.实验表明:与传统算法相比,本方法不仅能够实现准确的车牌定位及倾斜校正,而且对图像亮度、污损、倾斜、尺寸变化等具有良好的适应性和鲁棒性.  相似文献   

9.
针对车牌具有稳定的颜色特征和形状特征,提出基于颜色与结构特征的车牌定位算法.利用OTSU自动阈值化技术将灰度车牌图像转化为二值化图像,通过对每一个连通区域提取形状参数,粗划分出候选车牌区域,最后利用颜色特征确定车牌.实验表明,这种车牌定位方法具有一定的优越性.  相似文献   

10.
一种基于车牌特征信息的车牌识别方法   总被引:18,自引:3,他引:18  
提出一种基于车牌特征信息分析的车牌识别方法,它充分利用车牌定位和字符分割过程中得到的信息对车牌识别过程进行反馈,将二值化、车牌定位和字符分割紧密结合,注重车牌与车辆背景图像分离特征,以连通域分析为字符分割特点,结合局部二值化算法,提高正确率。实际应用结果表明,本方法具有很强的环境适应性和鲁棒性。  相似文献   

11.
针对传统AdaBoost算法的不足,分析了训练过程中出现过训练及分类器退化的问题,并提出了解决这一问题的有效新方法.新方法主要对样本及时更新和样本权重的更新规则进行了调整.使用该方法训练级联车牌检测器,实验结果表明,新方法较好地解决了传统AdaBoost算法中所出现的过训练及退化问题,在保证检测率的同时降低了误检率,并且训练时间缩短了50%左右.  相似文献   

12.
针对传统AdaBoost算法的不足,分析了训练过程中出现过训练及分类器退化的问题,并提出了解决这一问题的有效新方法。新方法主要对样本及时更新和样本权重的更新规则进行了调整。使用该方法训练级联车牌检测器,实验结果表明,新方法较好地解决了传统AdaBoost算法中所出现的过训练及退化问题,在保证检测率的同时降低了误检率,并且训练时间缩短了50%左右。  相似文献   

13.
基于图像处理的车牌定位方法的研究   总被引:1,自引:0,他引:1  
对智能交通系统的核心技术——汽车牌照识别技术进行了研究,在图像处理技术的基础上,着重研究了车牌区域定位技术,分析了目前有代表性的车牌定位方法,介绍了利用粒子图像测速关联PIV(Particle Image Velocimeter)算法原理,提出了一种采用车牌字符笔画2个边缘互相关值最大的方法进行车牌定位的算法,准确而快速地检出了车牌区域,为后续车牌字符识别打下了很好的基础。  相似文献   

14.
对车牌区域的准确定位是实现自动车牌识别的一个重要步骤。首先对香港车牌进行粗定位,得到一些可能的车牌区域,然后确定这些区域的精确范围,同时去除部分伪车牌,在字符提取和字符识别时进一步去除伪车牌。迭代反馈处理所有精确范围区域后,得到真正的香港车牌区域。  相似文献   

15.
对车牌区域的准确定位是实现自动车牌识别的一个重要步骤。首先对香港车牌进行粗定位,得到一些可 能的车牌区域,然后确定这些区域的精确范围,同时去除部分伪车牌,在字符提取和字符识别时进一步去除伪车 牌。迭代反馈处理所有精确范围区域后!得到真正的香港车牌区域。  相似文献   

16.
车牌图像包含的尺度、仿射变化及其复杂的背景是影响车牌定位准确度的重要因素。在高斯差(DOG)尺度空间框架下,笔者提出了一种基于多尺度乘积的角点特征和视觉颜色特征提取及其相融合的车牌定位算法。基于高斯差尺度空间的图像边缘信息,应用多尺度乘积分别提取具有尺度和仿射不变特性的角点和颜色特征,并在两特征融合结果基础上确定车牌位置候选区域;最后通过车牌区域特征点之间的距离及密集关系实现车牌的准确定位。对大量实拍的复杂环境下的车辆图像进行测试表明,该算法对车牌定位具有快速、高效的定位效果,且在噪声、仿射变换等方面的鲁棒性表现较好。  相似文献   

17.
基于神经网络的车牌自动识别算法   总被引:4,自引:0,他引:4  
由于车牌字符自动识别系统对实时性要求较高,采用一种全局自适应快速BP算法神经网络,根据车牌字符特征,分别构造了4个子神经网络,实现了能够应用于实际的牌照自动识别系统。实验证明,用该算法实现的车牌字符识别系统识别率高,误识率低,可直接用于实际的牌照自动识别系统。  相似文献   

18.
针对车牌识别中的字符识别问题,提出了一种改进的模板匹配方法,首先把字符模板根据某种特征进行粗分类,特征类似的分到同一组,识别时首先提取字符的这种特征,根据特征提取相应分组的模板进行匹配,最后给出识别结果。  相似文献   

19.
针对复杂背景情况下的车牌定位问题,给出了一种融合了小波高频能量的方法。首先利用CIE-xy色品图进行颜色分割,找到符合车牌底色的候选区域。然后对候选区域进行数学形态学滤波,消除不必要的干扰。接着利用车牌特有的结构特征剔除明显不符合车牌特征的候选区域,提取符合条件的候选区域进行小波变换,由于车牌区域有着丰富的垂直方向纹理信息,因此比较候选区域的垂直高频能量,能量最高者即为初步选定的车牌区域。最后利用区域选择时的垂直方向小波变换系数对选择区域进行重构,并验证选择结果的正确性,如果为非车牌,则进行二次定位。该方法有效的解决了车身颜色与车牌底色相近时定位困难的问题。对各种条件下拍摄的225幅含有车牌的图像应用该算法,定位准确率达到98.2%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号