首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Luoguhe intrusion, located in Mohe County, Heilongjiang Province, is mainly composed of monzogranite, quartz diorite and granodiorite, with minor diorite, tonalite, quartz monzodiorite, quartz monzonite, syenogranite and alkali-feldspar granite. The intrusion can be divided into two iithological units, i.e. quartz diorite and monzogranite units, with affinities to high-K caic-alkaline series. The quartz diorite unit (SiO2: 54.79%-58.30%, Na2O/CaO: 0.79-1.53 and Shand index: 0.77-0.82) belongs to metaluminous rocks. And the monzogranite unit (SiO2: 65.29%-66.45%, Na2O/CaO: 1.73-3.43 and Shand index 〈1.05) can be considered as weakly peraluminous rocks. The intrusion is characterized by high REE abundance (∑REE = 180.2-344.3μg/g), medium-strong negative Eu anomalies (δEu = 0.33-0.82), weak REE fractionation [(La/Yb)N = 4.12-10.45], enrichments in Rb, Th, U, K, La, Ce, Nd, Hf, Zr and Sm, but strong depletions of Ba, Nb, Ta, Sr, P and Ti. These characteristics of major, REE and trace elements indicate that the intrusion was formed in a transitional tectonic setting from compressionai to extensional regime, which can be classified as post-collisional granitoids. SHRIMP U-Pb zircon analyses yield ages of 517±9 and 504±8 Ma for the quartz diorite and monzogranite units, respectively. The discovery of Early Paleozoic post-collisionai granites in the northern margin of the Erguna massif indicates that the northern branch of Paleo-Asian Ocean between Siberian plate and Erguna massif was closed in the Early Paleozoic and the Salair orogeny ended ca. 500 Ma ago.  相似文献   

2.
Granitic gneiss on Duku highway in western Tianshan has been dated by the U-Pb zircon method. When plotted on the concordia diagram, the results give linear data array and the upper intercept age of (882 ± 33)Ma, and the age was considered as the crystallization age of the protolith. Granitic gneiss has high ASI value (1.09), high LILE and LREE contents, significantly negative Eu depletion, distinctly negative Ba, Sr, P, Ti and Nb anomalies and indicate continental crust parentage, which is consistent with high initial87Sr/86Sr ratios value (0.7170) and very negative εNd(t)=-14.1. The protolith magma is interpreted as a product of partial melting of the basement rocks of older basement crust.  相似文献   

3.
Leucogranites play a significant role in understanding crustal thickening, melting within continental collisional belts, and plateau uplift. Field investigations show that Miocene igneous rocks from the Hoh Xil Lake area mainly consist of two-mica leucogranites and rhyolites. We studied the Bukadaban two-mica leucogranites and the Kekao Lake, Malanshan and Hudongliang rhyolites by zircon U-Pb, muscovite and sanidine 40Ar/39Ar geochronology, and whole-rock geochemical and Sr-Nd isotopic analysis. Results yielded crystallization and cooling ages for the Bukadaban leucogranites of 9.7±0.2 and 6.88±0.19 Ma, respectively. Extrusive ages of the Kekao Lake and Malanshan rhyolites are 14.5±0.8 and 9.37±0.30 Ma, respectively. All rocks are enriched in SiO2 (70.99%-73.59%), Al2O3 (14.39%-15.25%) and K2O (3.78%-5.50%) but depleted in Fe2O3 (0.58%-1.56%), MgO (0.11%- 0.44%) and CaO (0.59%-1.19%). The rocks are strongly peraluminous (A/CNK=1.11?1.21) S-type granites characterized by negative Eu anomalies (δ Eu=0.18-0.39). In also considering their Sr-Nd isotopic compositions (87Sr/86Sri=0.7124 to 0.7143; δ Nd (9 Ma) =-5.5 to -7.1), we propose that these igneous rocks were generated through dehydration melting of muscovite in the thickened middle or lower crust of northern Tibet. Melting was probably triggered by localized E-W stretching decompression in the horse tails of Kunlun sinistral strike-slip faults. Reactivation of the Kunlun strike-slip faults, accompanied by emplacement of leucogranite and eruption of rhyolite in the Hoh Xil Lake area, indicates that large-scale crustal shortening and thickening in northern Tibet mainly occurred before 15 Ma. In addition, these findings suggest that the northern Tibetan Plateau attained its present elevation (~5000 m) at least 15 Ma ago.  相似文献   

4.
Li  HongYan  Xu  YiGang  Huang  XiaoLong  He  Bin  Luo  ZhenYu  Yan  Bin 《科学通报(英文版)》2009,54(4):677-686
LA-MC-ICPMS U-Pb dating has been performed on detrital zircons from the Upper Carboniferous Tai-yuan Formation (N-8) in the Ningwu-Jingle Basin, west of the North China Craton (NCC). The ages of 72 detrital zircon grains are divided into three groups: 303―320 Ma (6 grains), 1631―2194 Ma (37 grains, peaked at 1850 Ma), 2318―2646 Ma (29 grains, peaked at 2500 Ma). Detrital zircons of Group 2 and Group 3 were likely derived from the basement of the NCC. Group 1 zircons exhibit 176Hf/177Hf ratios ranging from 0...  相似文献   

5.
Hercynian (Variscan) orogenic belts, including the European-NW African orogen, the Appalachian orogen of North America and the central Asia-Mongolia- Hinggan orogen, etc., are widely distributed in the world. Their extensions are often several thousand ki…  相似文献   

6.
LA-ICP-MS zircon U-Pb dating and geochemical data for the Late Paleozoic volcanic rocks from eastern and southeastern margins of the Jiamusi Massif are presented to understand the regional tectonic evolution. Zircons from eight representative volcanic rocks are euhedral-subhedral in shape and display striped absorption and fine-scale oscillatory growth zoning as well as high Th/U ratios (0.33-2.37), implying a magmatic origin. The dating results show that the Late Paleozoic volcanic rocks in the study area can be divided into two stages, i.e., the Early Permian (a weighted mean 205^Pb/238^U age of 288 Ma) and the Middle Permian volcanisms (a weighted mean 205^Pb/238^U age of 268 Ma). The former is composed mainly of basalt, basaltic-andesite, andesite and minor dacite. They are characterized by low SiO2 contents, high Mg^# (0.40-0.59), enrichment in Na (Na2O/K2O = 1.26-4.25) and light rare earth elements (LREEs), relative depletion in heavy rare earth elements (HREEs) and high field strength elements (HFSEs), indicating that an active continental margin setting could exist in the eastern margin of the Jiamusi Massif in the Early Permian. The latter consists mainly of rhyolite and minor dacite with high SiO2 (77.23%-77.52%), low MgO (0.11%-0.14%), enrichment in 1(20 (Na2O/K2O ratios 〈 0.80) and Rb, Th, U and depletion in Eu, Sr, P and Ti, implying a crust-derived origin. Therefore, it is proposed that the Middle Permian volcanic rocks could have formed under the collision of the Jiamusi and the Khanka Massifs.  相似文献   

7.
This study presents zircon and garnet ages of a mafic granulite from the high-grade Variscan basement of the Black Forest, Germany and discuss isotope closure temperature of garnet Sm-Nd and U-Pb systems. Zircon grains yield 207Pb/206Pb ages between ~340 and ~414 Ma by the U-Pb and evaporation methods. In contract, garnet dating gives Sm-Nd and Pb-Pb isochron ages of (398±3) Ma and (411±14) Ma, respectively, which are older than most of zircon ages. These data imply that most of zircons lost radiogenic Pb, probably due to metamictization or recrystallisation during the granulite-facies metamorphism (~800℃) at ~340 Ma. Garnet Sm-Nd and U-Pb systems preserve chronological information of pro-grade metamorphism, probably profiting from a fluid-absence metamorphic environment. These results demonstrate that garnet mineral can be a better candidate than zircon mineral to date high-grade metamorphism by the U-Pb and Sm-Nd methods in some cases.  相似文献   

8.
Finding of Neoproterozoic syenites at Fangcheng in the northern Qinling region of the East Qinling orogen provides an important constraint on timing of tectonic transformation to extensional regime. The alkaline pluton consists mainly of nepheline syenite, aegirine syenite, and alkali-feldspar syenite. The syenites are of intermediate (SiO2 = 54%-62%), rich in alkali (K2O+Na2O = 12%-15%), aluminum (Al2O3= 16.81%-23.26%) and large ion lithophile elements (LILE), without any obvious Nb, Ta, Zr, and Hf anomalies. The Fangcheng syenites are geochemically characterized by relative enrichment of LREE, minor differentiation of HREE, significant negative Eu anomalies (Eu = 0.13-0.23), less negative εNd(t) values of -1.37 to-3.90, young Nd model ages of 1364 to 1569 Ma, and high zircon saturation temperatures of 915 to 1044℃. The syenitic magmas probably originated from small proportion melting of upper mantle in an extensional regime of intraplate-anorogenic tectonic setting, and have been slightly contaminated by crustal materials during ascending and/or emplacement. LA-ICP-MS zircon U-Pb dating yields ages of 844.3±1.6 Ma (MSWD=0.86), suggesting that the Fangcheng alkaline syenites formed in the early Neoproterozoic. They are the oldest Neoproterozoic alkaline rocks ever recognized in the Qinling orogen as well as in South China. This implies that the tectonic regime of the Qinling region would have transformed from post-collisional stretch to intraplate-anorogenic extension no later than 844 Ma.  相似文献   

9.
The REE patterns of the basic volcanic rocks in Mangya area, Altun, are slight rich in LREE with (La/Ya)-N=1.69-3.20, (La/Sm)-N=1.37-1.87, other trace element ratios of the rocks are Th/Ta≈1 (for a few samples greater than 1.5), Nb/Y=0.34-0.62, Ti/Y=310-443 (on the average: 381), Ti/V=37-62, Zr/Nb=9.4-12.4, Sr/Rb=12-80 (on the average: 37), and Nb/Th=7.7-16.8. These features are similar to that of E-MORE or OIB. The ε Nd(t) value, being 3.95- 4.12, shows that the source of the volcanic rocks is derived from depleted asthenosphere mantle mixed with materials from enriched mantle. These, together with the information of geological setting and rock assemblages, indicate that the basic volcanic rocks are of ophiolite. The Sm-Nd isotope ages for the eight basic volcanic rock samples construct a straight line with good correlation, and the calculated isochron age is (481.3±53) Ma. Besides, the eight calculated ε Nd(t) and model ages are close to each other, which suggests that they are homologous, so the isochron is not a mixed line. In the meantime, the isochron age ((481.3±53) Ma) is lower than the model ages (T DM=1 004-1 534 Ma) of the samples, suggeting that the isochron age represents the formation age of the basic volcanic rocks and the ophiolite belt in Mangya area, Altun is formed in the early Paleozoic (Cambrian-Ordovician). In spite of the greater uncertainty of the age, it is still reliable because it is consistent with the age constrained by the regional strata.  相似文献   

10.
The eclogite, discovered in Liuyuan, occurs as lenticular enclave within granitic gneiss. It has typical features of eclogite in petrology and mineralogy. The eclogite provides an important window to reconstruct the tectonic border of the Tarim block. The granitoids, located in Baihu area, yield U-Pb zircon ages of 1 660–2 000 Ma (Palaeoproterozoic), which implies an early Precambrian basement in the area.  相似文献   

11.
Highly precise 40Ar-39Ar dating results demonstrate that the ages of potash-rich volcanic rocks in western Shandong Province are 114.7–124.3 Ma, and that of the lamprophyres is 119.6 Ma. The potash-rich volcanic rocks have relatively high (87Sr÷86Sr)i ratios (0.708715–0.711418) and distinctly negative εnd values (−11.47–−17.54), and are enriched in radiogenic lead (206Pb÷204Pb=17.341−17.622, 207Pb÷204Pb=15.525−15.538, 208Pb÷204Pb = 37.563−37.684). Similarly, the lamprophyres also have quite low εnd values (−11.57–−19.64). Based on the fact that the Sr, Nd and Pb isotopic compositions of potash-rich volcanic rocks are very consistent with that of the clinopyroxene separates, and by integrating comprehensive analyses of their tectonic settings, and extensive comparisons of the Sr, Nd isotopic compositions with that of the related simultaneous rocks, it is concluded that the potash-rich volcanic rocks and lamprophyres in western Shandong Province were most possibly derived from the partial melting of enriched mantle which was caused by source contamination and metasomatism of subducted continental crustal materials.  相似文献   

12.
Zircon U-Pb age and Hf isotope, and major and trace element compositions were reported for granite at Quanyishang, which intruded into the Kongling complex in Yichang, Hubei Province. The results show that the Quanyishang granite is rich in silicon and alkalis but poor in calcium and magnesium, and displays enrichment in Ga, Y, Zr, Nb but depletion in Sr and Ba, exhibiting the post-orogenic A-type affinity. 90% zircons from the granite are concordant, and give a middle Paleoproterozoic magmatic crystallization age (mean 1854 Ma). Initial Hf isotope ratios (176Hf/177Hf)i of the middle Paleoproterozoic zircons range from 0.280863 to 0.281134 and they have negative eHf(t) values with a minimum of -26.3. These zircons give the depleted mantle model ages (TDM) of 2.9―3.3 Ga (mean 3.0 Ga), and the average crustal model ages (Tcrust) of 3.6―4.2 Ga (mean 3.8 Ga). A Mesoarchean grain with 207Pb/206Pb age of 2859 Ma has a slightly high TDM (3.4 Ga) but similar Tcrust (3.8 Ga) to the Paleoproterozoic zircons. All these data suggest that the source materials of the Quanyishang A-type granite are unusually old, at least ≥2.9 Ga (even Eoarchean). The event of crustal remelting, which resulted in the formation of the Quanyishang granite in the middle Paleoproterozoic, recorded the cratonization of the Yangtze conti-nent. The process may have relation to the extension and collapse of the deep crust with Archean ages, in response to the transition stage of the assembly and breakup of the Columbia supercontinent.  相似文献   

13.
A combined study of zircon U-Pb dating, Hf isotopes and trace elements has been carried out for granodioritic neosomes of migmatites from the Tianjingping area in northwestern Fujian Province. Zircons are characterized by zoning, higher Th/U ratios (mostly≥0.1), HREE enrichment, and positive Ce and negative Eu anomalies, and show features similar to magmatic or anatectic zircons. Apparent ^206Pb/^238U ages for the zircons are 447±2 Ma (95 % conf., MSWD=0.88), corresponding to a Caledonian event. εHf(t) values are -13.3 to -9.7, indicating a crustal source. Two-stage Hf model ages are 1.7 to 1.9 Ga, suggesting that protolith of the migmates was probably formed in the Paleoproterozoic. The granodioritic neosomes have the characteristics of peraluminous calc-alkaline granite, and their REE patterns and trace elements spidergrams show features of middle to upper crustal rocks. Together with previous studies, we conclude that the protolith of the Cathaysia basement in the Tianjingping area was likely formed in the middle-late Paleoproterozoic and experienced partial melting during the Caledonian period. The recognition of Caledonian reworking of the Paleoproterozoic basement in the Cathaysia Block provides a new insight into the tectonic evolution of the Cathaysia Block in the Caledonian period and the interaction between the Cathaysia Block and the Yangtze Block.  相似文献   

14.
Nd-Sr isotopic compositions of 12 Mesozoic granitoids from Jiangxi Province have been reported. They show low-εNd( - 13.8--8.3), high-/Sr(0.71069-0.73981) and old tDM (2087-1635 Ma). Comparison between the Sm-Nd isotopic compositions of the granitoids and those of the basement metamorphic rocks suggests that these granitoids were mainly derived from the metasedimentary rocks. There is an east-west trend Mesozoic granitoid zone with low-tDM from S. Jiangxi to S. Fujian. The origin of these granites was preliminarily discussed.  相似文献   

15.
Using in situ zircon dating by LA-ICP-MS and MC-ICP-MS, detrital zircon of 3981±9 Ma age was found in metamorphic rocks of the Ningduo Rock Group, Changdu Block of Northern Qiangtang. This is the oldest age record that has been found in the Qiangtang area. This finding also constitutes the third zircon locality in China with an age older than 3.9 Ga. Thus, the discovery provides new information for the study of Hadean crust. In addition, we found 3.51–3.13 Ga, ∼2440 Ma, ∼1532 Ma, ∼982 Ma and ∼618 Ma age peaks from 100 test spots. The younger ages of ∼982 Ma and ∼618 Ma correspond to the formation of the Rodinian super-continent and the Pan-African event, respectively. These findings suggest a close relationship between these zircons and the Gondwanan super-continent. The age of ∼618 Ma defines the lower limit on the deposit time of the protolith for the garnet-mica-quartz schist in the Ningduo Rock Group. Zircons with an age of ∼982 Ma generally display a negative ɛHf(t) and a two-stage Hf model with concentrated ages around 1933–2553 Ma. This pattern indicates that the source area of the Ningduo Rock Group underwent a significant separation of depleted mantle into the crust during the Paleoproterozoic Era. However, zircons with ages of 2854–3505 Ma also show a negative ɛHf(t) and a two-stage Hf model with a concentration of ages around 3784–4316 Ma. These results demonstrate that the source area of the Ningduo Rock Group contains a residual amount of ancient (Hadean) crustal materials. This paper provides new information on the relationship between the basement of the Qiangtang area and the Paleoproterozoic basements of the Gangdese and Himalayan regions, which constrains the northern boundary of Gondwana.  相似文献   

16.
High-precision U-Pb dating by in situ LA-ICP-MS yields an age of 4079±5 Ma for a xenocrystal zircon from Ordovician volcanics of the Caotangou Group in western part of the North Qinling Orogenic Belt. As a result, the North Qinling Orogenic Belt becomes one of a few localities in the world that contain Hadean age records (4276±6 Ma and 4404±8 Ma detrital zircons from Jack Hill of the Yilgarn craton, 4016 Ma Acasta gneisses of the Wopmay Orogeny and Burang quartzite with detrital zircon of 4103 Ma in Tibet). It is also the first report of the Hadean age in Phanerozoic volcanics. The finding of the 4.1 Ga xenocrystal zircon provides not only the geochronological record of the oldest crustal materials in China, but also the condition for further search for rocks forming in the region during the early time of the Earth's evolution. Thirty-six zircon U-Pb dates from the Ordovician volcanic rocks are subgrouped into seven generations that represent different tectono-magmatic events in the North Qinling Orogenic Belt. Among them, two periods of 0.9--1.5 Ga and 0.4--0.5 Ga are consistent with Mesoproterozoic and Early Paleozoic orogenies, respectively.  相似文献   

17.
U-Pb dating coupled with Hf isotope analyses on zircon from metasedimentary granulite enclaves in the Jiuzhou peraluminous granite from the Shiwandashan area in southeastern Guangxi Province, South China are presented in this paper. The results show that the protoliths of these granulite enclaves were mainly composed of Neo-Mesoproterozoic (564–1061 Ma) clastic materials with a peak age at ~822 Ma. These materials were probably derived from the igneous rocks that were emplaced during the Neoproterozoic breakup of Rodinian Supercontinent. Subordinate sediments include the Paleoproterozoic (1778–2227 Ma) and even the Meso-Paleoarchean materials with the oldest U-Pb age at 3551±8 Ma, indicating the existence of ancient crustal rocks in the area and/or its surrounding regions. Younger grains include the early Mesozoic (234±2 Ma) magmatic zircon populations and the late Permian (253±3 Ma) metamorphic zircon populations. Further zircon Hf isotope analyses reveal that their protoliths were complex, containing both recycled crustal rocks and juvenile materials. Combined zircon U-Pb ages and Hf isotope compositions indicate that at ~253 Ma, the Shiwandashan area experienced an intensive thermal event that resulted in the granulite-facies metamorphism; and that crustal remelting occurred at ~234 Ma to form the S-type granitoids during the uplifting stage. The metasedimentary granulite enclaves are resitites of these granitoids.  相似文献   

18.
A combined study of zircon LA-ICP-MS U-Pb dating, trace elements and Hf isotope was carried out for gneissic granite from the Sanzhishu area in Jingning, SW Zhejiang Province. Nearly all the zircons separated from the granite exhibited oscillatory zoning and high Th/U ratios (>0.1). The REE profile showed a pronounced positive Ce anomaly, negative Eu anomaly and an enrichment of HREE, which are typical characteristics of magmatic zircon. Thirteen concordant or nearly concordant analytical data yielded a weighted mean 207Pb/206Pb age of 1860±13 Ma (MSWD=0.084), representing the formation age of the granite. The magmatic zircons had negative εHf(t) values of −15.6 to −10.0 and two-stage Hf model ages of 3.1 to 3.4 Ga, indicating that the granites were formed by reworking of ancient crust. The major- and trace-element data indicate that the gneissic granites are metaluminous high-K calc-alkaline rocks and exhibit the same geochemical characteristics as aluminous A-type granites, implying the emplacement of the granite in a post-orogenic extensional tectonic setting. We conclude that the Paleoproterozoic crustal reworking event in the Cathaysia Block of South China marked the transition from assembly to break-up of the Columbia supercontinent. Supported by National Natural Science Foundation of China (Grant No. 40873004), Special Funds for National Scientific Research of Commonweal Industries, the Ministry of Land and Resources of China (Grant No. 2008110015), Opening Foundation of State Key Laboratory of Continental Dynamics, Northwest University (Grant No. 06LCD12) and the Project of Land and Resources Bureau of Zhejiang Province (Grant No. 2004005)  相似文献   

19.
The sodium-rich dacites and albite porphyries of Permian in the Awulale Mountain of west Tianshan have unique chemical and trace element signatures identical to adakite. These intermediate-acidic igneous rocks are characterized by high Na2O, Al2O3 and Sr contents and high Sr/Y and La/Y ratios (>40 and >20, respectively), and low Y and Yb contents, and strong depletion in HREE, and positive Eu anomaly. The (143Nd/144Nd)i is in the range from 0.51236 to 0.51248 and the eNd(t) is positive value (+0.79—+3.11); the (87Sr/86Sr)i is in the range from 0.7052 to 0.7054. These Nd and Sr isotopic composition features indicate that the source rocks of these adakite-type rocks are from a weakly depleted mantle, or a depleted mantle, but was contaminated by the crustal materials. These adakite-type rocks were most likely derived from the partial melting of new underplated basaltic rocks under the conditions of amphibolite to eclogite transition in the postcollisional environment of North Xinjiang during the Permian Period. They are not only the Phanerozoic juvenile crust materials, but also are probably animportant symbol of the underplating of mantle- derived basaltic magmas and the vertical growth of continental crust in the west Tianshan area during the postcollision of Late Paleozoic.  相似文献   

20.
为了加深对华北北缘晚古生代构造背景以及古亚洲洋闭合时限的认识, 对华北北缘大青山地区小井沟花岗岩开展了年代学、地球化学和同位素研究。分别利用LA-MC-ICP-MS, ICP-AES和ICP-MS等方法进行锆石U-Pb测年, 主、微量和稀土元素分析以及锆石Hf同位素测试。结果表明, 小井沟岩体侵位于二叠纪, 侵位年龄为275±1 Ma (MSWD=0.93)。该花岗岩具有高硅(SiO2=70.72%~72.64%)、高钾(K2O=4.19%~4.23%)的特点, A/CNK均约为1.1, 属于弱过铝质的高钾钙碱性系列, 稀土元素总量(ΣREE)为87.67~101.51 μg/g, 配分曲线呈右倾型, 具有微弱的Eu负异常, 富集大离子亲石元素(LILE, 如Rb, Ba, K, Sr等), 亏损高场强元素(HFSEs, 如Nb, Ta, Y, Yb, Lu等), 应该是由下地壳部分熔融形成。该花岗岩的锆石具有负的εHf(t)值(-9.56~-5.00), 模式年龄(TDM2)在1.91~1.61 Ga之间, 表明华北陆块古元古代的地壳岩石应该是其主要物源, 可能有幔源物质的参与。结合整个华北北缘二叠纪花岗岩的岩浆演变特征, 小井沟岩体应形成于由俯冲向碰撞-后碰撞转变的过渡时期, 古亚洲洋可能在晚二叠世之前已闭合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号