首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Duchenne muscular dystrophy (DMD) is an X-linked disorder affecting about 1 in 3,500 males. It is allelic with the milder Becker muscular dystrophy. The biochemical basis for both diseases is unknown and no effective treatment is available. Long-range physical mapping has shown that the DMD gene, localized in Xp21, is extremely large, exceeding 2 million base pairs. Until now, carrier detection and prenatal diagnosis has involved the use of linked restriction fragment length polymorphism markers which detect muscular dystrophy-associated deletions in about 10% of the cases. Field inversion gel electrophoresis (FIGE) allows the detection of structural rearrangements in 21 out of 39 of the DMD patients studied (54%), of which 14 (65%) were not detected by conventional methods. Large deletions seem to make up a much higher fraction of the DMD mutations than so far indicated by other methods. A region prone to deletion was located in the distal half of the gene. FIGE analysis could provide a valuable extension of information for carrier detection and prenatal diagnosis. The technique should be generally applicable to the study of diseases involving structural chromosomal rearrangements.  相似文献   

2.
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder which affects approximately 1 in 3,300 males, making it the most common of the neuromuscular dystrophies. The biochemical basis of the disease is unknown and as yet no effective treatment is available. A small number of females are also affected with the disease, and these have been found to carry X; autosome translocations involving variable autosomal sites but always with a breakpoint within band Xp21 of the X chromosome (implicated by other kinds of genetic evidence as the site of the DMD lesion). In these female patients the normal X chromosome is preferentially inactivated, which it is assumed silences their one normal DMD gene, leading to expression of the disease. In one such affected female the autosomal breakpoint lies in the middle of the short arm of chromosome 21, within a cluster of ribosomal RNA genes. Here we have used rRNA sequences as probes to clone the region spanning the translocation breakpoint. A sequence derived from the X-chromosomal portion of the clone detects a restriction fragment length polymorphism (RFLP) which is closely linked to the DMD gene and uncovers chromosomal deletions in some male DMD patients.  相似文献   

3.
4.
5.
Preferential deletion of exons in Duchenne and Becker muscular dystrophies   总被引:30,自引:0,他引:30  
Duchenne and Becker muscular dystrophy (DMD and BMD) genes are located in Xp21 on the short arm of the X chromosome. DMD patients display a much more severe clinical course than BMD patients, and yet about 10% of cases of each have been reported to have deletions for parts of the gene. Using a complementary DNA subclone of the DMD gene we have screened 66 DMD and BMD patients who had not previously shown deletions with the probes then available. Fifteen patients have a deletion of this part of the gene, indicating a higher deletion frequency in this region (22%). Exons were deleted in five severely affected DMD patients and in ten BMD patients. Significantly, most of these deletions begin in the same region of the cDNA, which implies that there is a common mechanism for the generation of many of these mutations. An apparently identical deletion in one family gave classical BMD in two brothers (presenting in their teens) and only very mild muscle weakness in their 86-year-old great-great-uncle. Taking these data together with data using the probes previously published, we are able to detect deletions directly in 40% of our families requiring antenatal diagnosis or carrier detection.  相似文献   

6.
The Duchenne muscular dystrophy (DMD) locus has been localized to the short arm of the human X chromosome (Xp21) by detection of structural abnormalities and by genetic linkage studies. A library highly enriched for human DNA from Xp21 was constructed using DNA isolated from a male patient who had a visible deletion and three X-linked disorders (DMD, retinitis pigmentosa and chronic granulomatous disease). Seven cloned DNA probes from this library and the probe 754 (refs 5, 8) are used in the present study to screen for deletions in the DNA isolated from 57 unrelated males with DMD. Five of these DMD males are shown to exhibit deletions for one of the cloned DNA segments and at least 38 kb of surrounding DNA. In addition, two subclones from the same region detect four restriction fragment length polymorphisms which exhibit no obligate recombination with DMD in 34 meiotic events. These new DNA segments will complement the existing Xp21 probes for use in carrier detection and prenatal diagnosis of DMD. Elucidation of the end points of the five deletions will help delineate the extent of the DMD locus and ultimately lead to an understanding of the specific sequences involved in DMD.  相似文献   

7.
8.
The unc-22 gene of Caenorhabolitis elegans encodes a protein which is a component of the myosin-containing A-band of the worm's striated body-wall muscle. Among 51 revertants of a transposon-induced mutant, we have identified four which retain a barely detectable mutant phenotype. Molecular analysis shows that three of these have in-frame deletions of 1.0, 1.3 and 2.0 kilobases, whereas the fourth partial revertant and two other apparently complete revertants have small insertions. All these rearrangements involve coding sequence and, in the case of the deletions, result in polypeptides that are shorter than the wild-type protein. The region of the gene containing these rearrangements contains 10 copies of a motif recognized in other regions of the gene (our unpublished data). We suggest that one explanation for the minimally mutant phenotype associated with the deletions is that the size and the repeated nature of the unc-22 protein structure make it relatively tolerant of substitutions or deletions involving one or a small number of repeated motifs. These results could explain why in some human genetic diseases, such as Duchenne's muscular dystrophy, deletions can be associated with only mild forms of the disease.  相似文献   

9.
X-linked recessive Duchenne muscular dystrophy (DMD) is caused by the absence of dystrophin, a membrane cytoskeletal protein. Dystrophin is associated with a large oligomeric complex of sarcolemmal glycoprotein. The dystrophin-glycoprotein complex has been proposed to span the sarcolemma to provide a link between the subsarcolemmal cytoskeleton and the extracellular matrix component, laminin. In DMD, the absence of dystrophin leads to a large reduction in all of the dystrophin-associated protein. We have investigated the possibility that a deficiency of a dystrophin-associated protein could be the cause of severe childhood autosomal recessive muscular dystrophy (SCARMD) with a DMD-like phenotype. Here we report the specific deficiency of the 50K dystrophin-associated glycoprotein (M(r) 50,000) in sarcolemma of SCARMD patients. Therefore, the loss of this glycoprotein is a common denominator of the pathological process leading to muscle cell necrosis in two forms of muscular dystrophy, DMD and SCARMD.  相似文献   

10.
Functional improvement of dystrophic muscle by myostatin blockade   总被引:42,自引:0,他引:42  
Mice and cattle with mutations in the myostatin (GDF8) gene show a marked increase in body weight and muscle mass, indicating that this new member of the TGF-beta superfamily is a negative regulator of skeletal muscle growth. Inhibition of the myostatin gene product is predicted to increase muscle mass and improve the disease phenotype in a variety of primary and secondary myopathies. We tested the ability of inhibition of myostatin in vivo to ameliorate the dystrophic phenotype in the mdx mouse model of Duchenne muscular dystrophy (DMD). Blockade of endogenous myostatin by using intraperitoneal injections of blocking antibodies for three months resulted in an increase in body weight, muscle mass, muscle size and absolute muscle strength in mdx mouse muscle along with a significant decrease in muscle degeneration and concentrations of serum creatine kinase. The functional improvement of dystrophic muscle by myostatin blockade provides a novel, pharmacological strategy for treatment of diseases associated with muscle wasting such as DMD, and circumvents the major problems associated with conventional gene therapy in these disorders.  相似文献   

11.
Duchenne's muscular dystrophy (DMD) is an X-linked progressive myopathy caused by a defect in the DMD gene locus. The gene corresponding to the DMD locus produces a 14-kilobase (kb) messenger RNA that codes for a large cytoskeletal membrane protein, dystrophin. DMD and Becker's muscular dystrophy are the consequences of dystrophin mutations. The exact biological function of dystrophin remains unknown but it has been demonstrated that it is localized to the cytoplasmic face of the cell membrane and has direct interaction with several other membrane proteins. We report here the synthesis of a 14-kb full-length complementary DNA for the mouse muscle dystrophin mRNA and the expression of this cDNA in COS cells. The recombinant dystrophin is indistinguishable from mouse muscle dystrophin by western blot analysis with anti-dystrophin antibodies and was shown by an immunofluorescent technique to be localized in the cell membrane. Our successful construction of a functional full-length cDNA opens opportunities for the study of structure and function of dystrophin and provides an opportunity to initiate gene therapy studies.  相似文献   

12.
13.
14.
Duchenne muscular dystrophy (DMD) and its milder form, Becker muscular dystrophy (BMD), are allelic X-linked muscle disorders in man. The gene responsible for the disease has been cloned from knowledge of its map location at band Xp21 on the short arm of the X chromosome. The product of the DMD gene, a protein of relative molecular mass 400,000 (Mr 400K) recently named dystrophin, has been reported to co-purify with triads of mouse and rabbit skeletal muscle when assayed using polyclonal antibodies raised against fusion proteins encoded by regions of mouse DMD complementary DNA. Here we show that antibodies directed against synthetic peptides and fusion proteins derived from the N-terminal region of human DMD cDNA strongly react with an antigen present in skeletal muscle sarcolemma on cryostat sections of normal human muscle biopsies. This immunoreactivity is reduced or absent in muscle fibres from DMD patients but appears normal in muscle fibres from patients with other myopathic diseases. The same antibodies specifically react with a 400K protein in sodium dodecyl sulphate (SDS) extracts of normal human muscle subjected to Western blot analysis. We conclude that the product of the DMD gene is associated with the sarcolemma rather than with the triads and speculate that it strengthens the sarcolemma by anchoring elements of the internal cytoskeleton to the surface membrane.  相似文献   

15.
16.
17.
Duchenne muscular dystrophy (DMD), the most common and severe form of the muscular dystrophies, is an X-linked inborn error of metabolism with multiple tissue involvement. Although the major pathological changes are observed in skeletal muscle, abnormalities have also been detected in the heart, nervous system, red blood cells, lymphocytes and cultured skin fibroblasts. For many reasons, such as readily available tissue material, fewer secondary changes and the potential for prenatal diagnosis, cultured skin fibroblasts should be the tissue of choice to search for the primary defect. Several abnormalities have been reported in DMD fibroblasts, suggesting that the genetic abnormality is expressed in these cells. To search for potentially mutant protein(s) we have compared the protein composition of normal and DMD fibroblasts by two-dimensional gel electrophoresis and have now found one protein spot consistently missing in DMD cells. The nature of this protein and its relation to the DMD gene are unknown.  相似文献   

18.
Duchenne muscular dystrophy (DMD) is a debilitating X-linked muscle disease. We have used sequence information from complementary DNA clones, derived from the gene that is deleted in DMD patients, to generate an antiserum that stains the surface membrane of intact human and mouse skeletal muscle, but not that of DMD patients and mdx mice. Here we identify the protein reacting with this antiserum as a single component of relative molecular mass 210,000 (Mr = 210K) that fractionates with a low-ionic strength extract of intact human and mouse skeletal muscle. It is therefore distinct from the 400 K protein found in the heavy microsomal fraction of normal muscle and identified as a putative product of the DMD gene. We also analyse further the disease specificity of the antiserum. Positive staining is seen in normal controls, and in samples from patients with a wide range of muscular dystrophies other than DMD. Becker muscular dystrophy, which is allelically related to DMD, was the only other exception, and gave a sporadic staining pattern. The demonstration of a specific defect in the surface membrane of DMD muscle fibres substantiates the hypothesis that membrane lesions may initiate muscle degradation in DMD.  相似文献   

19.
F Jiménez  J A Campos-Ortega 《Nature》1979,282(5736):310-312
Mutations in genes involved in essential aspects of central nervous system development in Drosophila melanogaster are expected to be lethal. Thus, when searching for neurogenic mutants attention should be focused on embryonic lethal point mutants, for many of these might affect neural development. However, this approach can be very time consuming, for the location of neurogenic genes is unknown. A more convenient approach, which allows a faster screening of the genome, is to use relatively small chromosome deletions to determine whether the lack of a definite part of the genome affects neurogenesis. Once any region producing an interesting neural phenotype is found, it can be further analysed by the use of smaller deletions or point lethal mutants mapping within it, until the gene(s) responsible can be more precisely localised. We report here on a region of the Drosophila genome which has been found necessary for normal neurogenesis.  相似文献   

20.
对于资源潜力不明的新勘查区,尤其是地形复杂区,快速获取其地形图或三维地形模型,是开展相关勘查工作的基础.以滇西北茅草坪铜多金属矿区为例,提出了利用Google Earth平台提取研究区的三维空间数据,借助Surfer软件生成等高线和三维曲面模型的一种绘制大比例尺地形图或三维地形模型的直观、便捷方法 .该方法具有低成本、高效、准确的特点,可操作性强,可在当前地质勘查工作中广泛应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号