共查询到18条相似文献,搜索用时 62 毫秒
1.
针对短期电力负荷预测易受气象因素影响的特点,提出基于相似日和灰色理论的短期电力负荷预测模型;首先通过对日类型的判断得到相同日类型的负荷数据,然后对气象数据序列进行模糊化聚类处理,并结合预测日的气象数据,采用灰色关联方法进行关联分析,选取与预测日关联度高的负荷数据作为相似日负荷数据,采用灰色预测方法对相似日负荷数据进行短期电力负荷预测;仿真结果表明,选取了相似日之后的预测结果比未选取相似日的预测结果精度要高。 相似文献
2.
基于改进相似日的频域分解短期负荷预测方法,通过对负荷序列进行频域分解,采用外推法、改进相似日法与加权平均法分别对各分量进行预测,将各分量预测结果相加得到最后预测结果,该方法应用于短期负荷预测具有较好的预测精度. 相似文献
3.
短期负荷预测中选择相似日的探讨 总被引:36,自引:0,他引:36
合理的选择预测相似日是提高负荷预测综合预测模型预测效果的有效途径。传统依据人工经验选择相似日并不具备最好的预测效果。为了进一步提高负荷预测准确度,该文深入研究了负荷的两个特征量,认为对预测日的负荷水平和负荷曲线形状进行预测时,应该选取不同的相似日,即该文提出的趋势相似日和形状相似日;给出了这两种相似日的选择方案,从日特征量、日前趋势相似度以及这两者的综合3个角度阐述了选择预测日的趋势相似日的原理和方法;该文通过应用实例证实了其中一个方案有效地提高了负荷预测准确度。 相似文献
4.
短期负荷预测是电力系统最常用和最重要的预测类型。本文抛开天气因素、生产水平等相关因素,单纯从历史负荷数据出发进行了短期负荷预测算法的讨论。本文引入相似日的概念,通过确定相似度来选取合理的相似日。利用相似日的历史数据通过有效的算法可以计算出预测目的值,本文介绍了线性外推法、变化系数法和加权平均法。最后用一个应用实例说明了以上讨论算法的合理性。 相似文献
5.
电力系统短期负荷预测是调度中心制定发电计划及电力市场中发电厂报价的主要依据,也是能量管理系统(EMS)的重要组成部分,对电力系统的运行、控制和计划都有重要的影响,其预测精度直接影响着电力系统的经济性,综合考虑了影响电力负荷的诸多因素:负荷状况、天气情况、节假日等,分析了电力系统负荷的基本模型,提出了适合于负荷稳定,负荷变化基本由气象因素影响的电网的相似日匹配法的算法,并用VC 编程,用SQLSERVER作为数据库,实验证明,对于负荷资料和气象资料收集相对较好的地区,预测效果明显准确。 相似文献
6.
电力短期负荷预测是电力系统调度的重要基础工作,但影响因素众多,且ID3算法偏向多值属性,完全由ID3算法自动形成决策树时容易发生误判。为了克服ID3算法在短期负荷预测时的不足,可根据实际情况,人工指定对负荷影响规律比较明确、影响程度大的因素在决策树中的位置,这样自动和人工相结合,能有效克服自动生成决策树的不足;将信息熵赋值给属性,对各影响因素进行相似度计算,利用综合相似度对历史日进行排序,有效识别主导负荷变化的影响因素,建立了基于ID3算法的短期负荷预测新算法。理论和实例均表明,该算法对提高短期负荷预测的精度具有较大价值。 相似文献
7.
基于RBF神经网络和专家系统的短期负荷预测方法 总被引:41,自引:2,他引:41
深入研究了天气和特殊事件对电力负荷的影响,建立了结合径向基(RBF)神经网络和专家系统来进行短期负荷预测的模型。利用RBF神经网络的非线性逼近能力预测出日负荷曲线,然后利用专家系统根据天气因素或特殊事件对负荷曲线进行修正,使其在天气突变等情况下也能达到较高的预测精度。利用该模型编制的实用化软件在西北电网的多个电力局投入实际应用,结果表明:该方法用BP神经网络相比,具有较高的预测精度,同时具有较强的实用性。 相似文献
8.
在大规模配变负荷预测中,由于负荷特性差别以及受影响因素不同,若使用统一模型,准确率低且泛化能力差,若针对单台配变进行负荷预测建模,计算资源消耗过大.提出了一种基于多维聚类的配变负荷注意力长短期记忆网络(Attention Long Short-Term Memory,Attention-LSTM)短期预测方法.首先提取... 相似文献
9.
基于神经网络的空调负荷混沌优化预测 总被引:11,自引:0,他引:11
从空调负荷预测的目的出发,详细介绍了一种基于神经网络的混沌优化方法,对误差函数及搜索方法作了适当的改进,建立了一个混沌神经网络模型。并用此改进的模型对一实例进行了空调负荷预测,结果表明该方法简便、足够准确可靠。 相似文献
10.
支持向量机(support vector machine,SVM)作为一种新颖的机器学习方法已成功应用于短期电力负荷预测,然而应用研究发现SVM算法性能参数的设置将直接影响负荷预测的精度.为此在对SVM参数性能分析的基础上,提出了SCE-UA(shuffled complex evolution University ... 相似文献
11.
为了提高建筑空调负荷的预测精度,在分析空调负荷主要影响因素的基础上提出了一种基于自适应加权最小二乘支持向量机(AWLS-SVM)的建筑空调负荷预测方法。该方法根据预测误差的统计特性,采用基于改进正态分布加权规则,自适应地赋予每个建模样本不同的权值,以克服异常样本点对模型性能的影响。建模过程中采用粒子群优化(PSO)算法对模型参数进行优化,以进一步提高模型预测精度。基于DeST模拟数据将AWLS-SVM方法应用于南方地区某办公建筑的逐时空调负荷预测中,并与径向基神经网络(RBFNN)模型、LS-SVM模型及WLS-SVM模型作比较,其平均预测绝对误差分别降低了51.84%、13.95%和3.24%,并进一步基于实际空调负荷数据将该方法应用于另一办公建筑的逐日空调负荷预测中。预测结果表明:AWLS-SVM预测的累积负荷误差为4.56MW,亦优于其他3类模型,证明了AWLS-SVM具有较高的预测精度和较好的泛化能力,是建筑空调负荷预测的一种有效方法。 相似文献
12.
针对短期负荷预测方法中传统的模糊C均值(FCM)聚类容易陷入局部最优和对初始聚类中心敏感的问题,提出利用粒子群优化(PSO)算法的全局搜索特性来优化此缺点.通过优化的FCM聚类来选取与预测日相似的日期作为支持向量机的训练样本,既强化了训练样本的数据规律,又保证数据特征的一致性.实验结果表明,优化预测模型的预测精度优于BP神经网络和支持向量机算法. 相似文献
13.
针对短期电力负荷随机性强、预测精度低等问题,提出了基于模糊灰色聚类与蝙蝠优化神经网络的短期负荷预测模型。采用模糊聚类方法选择相似日粗集,然后用改进的灰色关联分析法选取相似日;为了克服传统BP算法易陷入局部极值和收敛速度慢等问题,利用相似日集中的样本训练蝙蝠优化的BP神经网络预测模型。以某地区的历史数据为实际算例,将文中所提算法与普通的BP神经网络、传统灰色关联与蝙蝠优化的BP神经网络预测结果相比,结果表明所提方法有很高预测精度和稳定性,在实际中有一定应用价值。 相似文献
14.
为了提高短期电力负荷预测的精度,提出基于RBF-ARX模型的短期电力负荷循环预测法:将短期电力负荷预测看作非线性时间序列预测问题,并根据历史负荷数据建立电力负荷自回归预测模型(ARX模型),用RBF神经网络逼近ARX模型的参数,并用结构化非线性参数优化法(SNPOM)离线估计模型参数。用该方法对湖南某市电力负荷进行预测,将预测结果与实际负荷值进行比较,结果表明:基于RBF-ARX模型的短期电力负荷循环预测法精度高,可靠性强,具有很好的实用性。 相似文献
15.
根据电力负荷的主要影响因素,考虑了休息日和气候因素的影响,建立了基于粒子群算法(PSO)的级联网络短期负荷预测模型.通过粒子群算法对级联网络的训练进行优化,提高模型的运算速度.结果表明,该方法预测精度较高,效果较好. 相似文献
16.
负荷数据的高度随机性和不确定性,导致短期负荷预测的精度很难提升.为了提高短期负荷预测的准确度,提出了一种基于完全自适应噪声集合经验模态分解(CEEMDAN)与卷积神经网络(CNN)和门控循环单元(GRU)组合模型的短期负荷预测方法.首先,利用CEEMDAN模型将复杂的原始负荷序列分解为几个相对简单的子序列;其次,利用卷... 相似文献
17.
提出了一种自编码器与PSO算法优化卷积神经网络结合的电力系统短期负荷预测模型。首先利用自编码器对相关变量数据进行处理,降低所需数据的噪声变量,提高预测效率;然后利用粒子群算法对卷积神经网络的权值和阈值进行优化,可有效提高预测模型的预测精度和预测速度。通过对实际电网的负荷数据进行仿真,验证了模型具有较高的预测精度。 相似文献
18.
电力负荷预测方法 总被引:2,自引:0,他引:2
陈建 《渤海大学学报(自然科学版)》2006,27(2):142-144
简要介绍了电力负荷预测技术的发展情况,具体介绍了电力负荷预测的几种常用方法,并详细分析了各种负荷预测方法的优点和缺点。 相似文献