共查询到20条相似文献,搜索用时 62 毫秒
1.
提出一种分布式全局最大频繁项集挖掘算法(DMFI),该算法含局部挖掘与全局挖掘2个阶段。提出一个基于FP-tree的改进频繁模式树(IFP-tree)来存储数据信息。在局部挖掘阶段,先在各站点上分别建立该模式树,并使用有序方式存储频繁项目,然后,通过对各局部数据库的扫描,挖掘出局部最大频繁项集。在全局挖掘阶段,利用各局部数据库生成的最大频繁项集以及利用组通信播报消息的方式,从而挖掘出全局最大频繁项集的集合。对算法的实现以及在多种情况下进行测试。研究结果表明:DMFI算法具有较好的性能。 相似文献
2.
冯凤 《合肥学院学报(自然科学版)》2007,17(4):46-49
更新挖掘最大频繁项目集是多种数据挖掘应用中的重要问题,其发现过程的高花费要求对高效更新挖掘算法进行研究.提出了一种快速的更新挖掘最大频繁项目集算法,其能够在原有挖掘结果的基础上,有效地挖掘出更新后的数据库中隐含的新最大频繁项目集. 相似文献
3.
基于FP-tree的最大频繁项集挖掘算法 总被引:1,自引:0,他引:1
现有的最大频繁项集挖掘算法在支持度阈值较大情况下已达到较高性能,但在支持度阈值较小时,由于候选项集的快速增长,其性能往往不理想。文章提出了一种基于频繁模式树(FP-tree)存储结构的最大频繁项集挖掘算法——DMFIF算法,将FP-tree各分枝作为初始候选项集,并按维数和支持度递减排序,结合子集剪枝策略,自顶向下搜索挖掘最大频繁项集。实验结果表明,该算法在低支持度阈值下稠密数据集中挖掘长模式具有较好性能。 相似文献
4.
频繁项集的挖掘是数据挖掘中的一个基础和核心问题,具有广泛的应用领域。由于它是数据挖掘过程中最耗时的部分,挖掘算法的好坏直接影响数据挖掘尤其是关联挖掘的效率和应用范围。 相似文献
5.
6.
阐述了关联规则挖掘对象事务数据库的特性,对关联规则挖掘的关键问题频繁项集的几种挖掘方法:Aptiori算法、最大频繁项集的挖掘算法、基于频繁链表的频繁项集挖掘算法作了分析研究,并指出了频繁项集挖掘算法优化的必要途径。 相似文献
7.
挖掘最大频繁项目集是多种数据挖掘应用中的关键问题,如果采用Apriori类的候选项目集生成一检验方法,则候选项目集生成的代价通常很高.为寻求避免生成大量候选项集或生成频繁模式树的挖掘算法,提出一种从事务项集交集求最大频繁项集的迭代算法DIIP(Datasets Iteration and Intersection Pruning Algorithm),通过不断缩减事务集数据量和尽可能早地对项目集进行修剪实现最大频繁项集的挖掘,该算法有别于已有的最大频繁项集经典算法,实验表明该算法有效可行. 相似文献
8.
《中南民族大学学报(自然科学版)》2016,(3):102-106
针对目前海量数据挖掘过程中存在着频繁项集挖掘效率低、冗余项集繁多的问题,提出了改进的频繁模式树和遗传算法(FPGA),该算法鉴于异构数据的差异性特征,采用改进的频繁模式树和基于MapReduce的并行遗传算法搜索最大频繁项集,缩小了搜索范围,提高了挖掘效率.实验结果表明:该算法在时间复杂度方面有了很大提高,与传统的FP_Growth算法相比,具有更好的加速比以及更高的执行效率. 相似文献
9.
NB-MAFIA: 基于N-List的最长频繁项集挖掘算法 总被引:1,自引:0,他引:1
本文在深度优先搜索的框架上, 引入基于项集前缀树节点链表的项集表示方法N-List, 提出一个高效的最长频繁项集挖掘算法NB-MAFIA。N-List的高压缩率和高效的求交集方法可以实现项集支持度的快速计算, 同时采用对搜索空间的剪枝策略和超集检测策略来提高算法效率。在多个真实和仿真数据集上, 通过实验评估了NB-MAFIA和两个经典算法。实验结果表明NB-MAFIA在多数情况下优于其他算法, 尤其在真实和稠密数据集上优势更为明显。 相似文献
10.
阐述了关联规则挖掘对象事务数据库的特性, 对关联规则挖掘的关键问题频繁项集的几种挖掘方法:Apriori算法、最大频繁项集的挖掘算法、基于频繁链表的频繁项集挖掘算法作了分析研究,并指出了频繁项集挖掘算法优化的必要途径 相似文献
11.
一种基于分布式数据库的全局频繁项目集更新算法 总被引:4,自引:0,他引:4
在算法FMAGF的基础上,提出了一种基于分布式数据库的全局频繁项目集更新算法-UAGFI,该算法主要考虑最小支持度发生变化时全局频繁项目集的更新情况。UAGFI在最坏的情况下仅须扫描各局部数据库一遍,并利用已挖掘的结果,可避免传送某些原全局频繁项目对应的条件频繁模式树,从而降低网络通讯代价,实验结果表明,UAGFI算法是有效可行的。 相似文献
12.
挖掘频繁闭项目集是数据挖掘领域中的一个重要研究方向,人们已提出了许多用于高效地发现大规模数据库中频繁闭项目集的算法,但对其更新维护问题的研究却比较少.在分析了频繁闭项目集更新算法关键技术的基础上,提出一种快速的增量式频繁闭项目集更新算法FUFCIA(fastupdating frquent closed itemsets algorithm),该算法将充分利用先前挖掘过程中所产生的信息来节省发现新的频繁闭项目集的时间开销,降低了候选频繁闭项目集的规模,减少了扫描数据库的次数.最后对该算法进行分析和讨论,并进行试验验证,试验结果表明算法FUFCIA是有效的. 相似文献
13.
一种不确定性数据中最大频繁项集挖掘方法 总被引:1,自引:0,他引:1
不确定性数据挖掘已经成为数据挖掘领域的新热点,频繁项集挖掘是重点研究的问题之一.但是目前出现的挖掘算法大多集中在完全频繁项集,而用于最大频繁项集和频繁闭项集的算法尚不多见.文中研究了一种基于UF-Tree的用于不确定性数据中挖掘最大频繁项集的算法,该挖掘过程分为两个步骤,第一步先得到以频繁1-项集为后缀的局部最大频繁项集,第二步得到所有的全局最大频繁项集,实验证明该算法性能良好且特别适用于稠密型、事务长度较小的数据集. 相似文献
14.
基于FP-Tree的最大频繁项目集更新挖掘算法 总被引:4,自引:1,他引:4
发现最大频繁项目集是多种数据挖掘应用中的重要问题.在应用中用户需要调整最小支持度,以发现更有用的最大频繁项目集.为此提出了一种最大频繁项目集更新算法(UMFPA),该算法通过对频繁模式树(FP-Tree)中的频繁项目头表(H Table)增加两个域,从而将减少在数据库不变而最小支持度变化的情况下的更新挖掘最大频繁项目集的费用.实验结果表明,算法在进行最大频繁项目集更新挖掘时具有很好的性能. 相似文献
15.
在分析了频繁序列模式更新算法关键技术的基础上,提出了一种快速的增量式更新频繁序列模式挖掘算法FUFSPA,该算法将充分利用先前挖掘过程中所产生的信息来减少本次挖掘过程中的时闻开销.另外,针对频繁序列模式挖掘中支持数计算的复杂性,提出了一种基于二进制形式的支持数计算方法,该方法只需进行一些“或”逻辑运算操作,将该方法用于序列模式挖掘中支持度(数)的计算,可以进一步提高算法的执行效率.实验结果表明算法FUFSPA是可行和有效的. 相似文献
16.
针对模糊频繁集的挖掘问题,提出一种有效的算法FMF.该算法采用FFP-树结构,将与模糊项目相关的事务的序号保存在树结点中.算法通过直接找到所有包含模糊项集的全部事务来计算该项集的支持度,不必扫描整个数据库,提高了模糊频繁项集挖掘的速度. 相似文献
17.
挖掘最大频繁项目集是许多数据挖掘中的关键问题.为克服早期基于Apriori的最大频繁项目集算法中的缺点,相继有多种挖掘最大频繁项目集方法被提出.其中对基于FP-tree的最大频繁项目集挖掘算法比较多,但对FP-tree中的结点的频度计数关注的很少.通过对FP-tree结构进行了仔细分析后,在FP-tree中结点的频度计数和集合理论的基础上,提出了一种新的最大频繁项目集挖掘算法USDMFIA(using set to discover maximum frequent itemsets algorithm).通过分析比较,显示此算法是有效的. 相似文献
18.
研究分布式环境下约束性关联规则更新问题,包括数据库中事务增加和删除2种情况.引入向导集的概念,提出基于全局局部模式的约束性关联规则增量式更新算法DUCAR,其中包括局部约束性频繁项目集更新算法ULFC和全局约束性频繁项目集更新算法UGFC.该算法充分利用原先的挖掘结果提高更新效率,首先从最高维的频繁n项目集进行更新,在更新过程中考虑约束条件,结合剪枝算法,生成较少数量的满足约束条件的候选项目集.将该算法用Java加以实现,采用多组数据对此算法的性能进行测试,并与其他算法作对比实验,实验结果表明,该算法是高效可行的. 相似文献
19.
基于集合运算的频繁集挖掘优化算法 总被引:1,自引:0,他引:1
挖掘关联规则是数据挖掘中一个重要的课题,产生频繁项目集是其中的一个关键步骤。 提出了一种基于集合运算的频繁项目集挖掘算法,并将该算法与经典算法Apriori进行比较。该算法只需要对数据库扫描一遍。实验表明该算法的效率较好。 相似文献
20.
杨君锐 《长安大学学报(自然科学版)》2004,24(6):102-110
针对关联规则下最大频繁项目集的特性,提出了一种快速挖掘最大频繁项目集的新算法MMFI(miningmaximumfrequentitemsets)。该算法摆脱了传统的经典算法Apriori及其变种情况下的自底向上的搜索策略,利用集合枚举树(set enumerationtree)的变形结构采取了自顶向下的新的搜索方式,并通过其独特的启发式判断策略、候选项目集的生成策略等,大大减少侯选项目集的生成,从而降低了CPU搜索时间,提高了挖掘效率。 相似文献