共查询到17条相似文献,搜索用时 62 毫秒
1.
本文介绍了一种基于粗糙集的多指标综合评价方法,评价过程中属性离散化采用了动态聚类中的C-均值算法,并根据粗糙集理论中属性约简的原理,将冗余的指标进行剔除,增加了评价的客观性,对于多指标综合评价有一定的参考意义。 相似文献
2.
本文研究了粗糙集理论在数据挖掘中的应用,提出了一种基于粗糙集理论的数据挖掘算法。首先对信息系统的数据加工泛化,构造其二进制可辨矩阵。对矩阵进行化简得到属性约简并生成规则。最后,结合银行申请信用卡的实例利用上述方法进行数据挖掘,消去冗余属性,抽取决策规则。 相似文献
3.
基于粗糙集理论的决策树构造算法 总被引:3,自引:0,他引:3
应用粗糙集理论,提出了一种利用新的启发式函数构造决策树的方法。该方法以属性重要性评价指标作为信息熵函数,对务件属性进行选择,充分考虑了属性间的依赖性和冗余性,弥补了ID3算法对属性间依赖性强调不够的缺点,解决了决策树中子树的重复和有些属性在同一决策树上被多次选择的问题,该方法还能对不相容决策表进行正确分类。实例表明该方法是正确有效的,而且明显优于传统的决策树构造方法。 相似文献
4.
5.
为了提高分类的精确度,提出一种基于粗糙集理论的增强学习型分类器。采用分割算法对训练数据集中连续的属性进行离散处理;利用粗糙集理论获取约简集,从中选择一个能提供最高分类精确度的约简。对于不同的测试数据,由于离散属性值的变化,相同的约简可能达不到最高的分类精确度。为克服此问题,改进了Q学习算法,使其全面系统地解决离散化和特征选择问题,因此不同的属性可以学习到最佳的分割值,使相应的约简产生最大分类精确度。实验结果表明.该分类器能达到98%的精确度.与其它分类器相比.表现出较好的性能。 相似文献
6.
提出了基于断点辨别力的粗糙集离散化算法.通过分析候选断点与决策类之间的相关性,定义了候选断点对决策类的辨别力,并以此作为断点重要性的度量,实现连续属性的离散化.离散化后的决策系统不改变原有的相容性,而且能最大限度地保留有用信息.采用多组数据对该算法的性能进行了检验,并与其它算法做了对比实验实验结果表明该算法是有效的,而且当候选断点个数增多时仍具有较高的计算效率. 相似文献
7.
沈晨鸣 《南京工程学院学报(自然科学版)》2007,5(1):30-34
粗糙集理论是一种研究不完整、不确定知识处理的数学工具,属性约简是粗糙集理论的核心内容之一.阐述了粗糙集理论的基本思想,给出了一种启发式的最小约简算法,通过一个实例,分析说明算法的可行性和有效性. 相似文献
8.
提出了基于断点辨别力的粗糙集离散化算法.通过分析候选断点与决策类之间的相关性,定义了候选断点对决策类的辨别力,并以此作为断点重要性的度量,实现连续属性的离散化.离散化后的决策系统不改变原有的相容性,而且能最大限度地保留有用信息.采用多组数据对此算法的性能进行了检验,并与其他算法做了对比实验.实验结果表明此算法是有效的,而且当候选断点个数增多时仍有较高的计算效率. 相似文献
9.
一种基于条件熵的粗糙集属性约简算法 总被引:1,自引:0,他引:1
粗糙集(Rough set)理论是一个新的数据挖掘方法,其主要思想是保持分类能力不变的情况下,通过属性约简,达到发掘知识并简化知识的目的。本文在理解和分析基于粗糙集理论的数据挖掘算法基础上针对属性约简提出了一个基于条件熵的启发式算法。 相似文献
10.
提出了基于断点辨别力的粗糙集离散化算法。通过分析候选断点与决策类之间的相关性,定义了候选断点对决策类的辨别力,并以此作为断点重要性的度量,实现连续属性的离散化。离散化后的决策系统不改变原有的相容性,而且能最大限度地保留有用信息。采用多组数据对此算法的性能进行了检验,并与其他算法做了对比实验。实验结果表明此算法是有效的,而且当候选断点个数增多时仍有较高的计算效率。 相似文献
11.
LIUShuai-dong CHENShi-hong 《武汉大学学报:自然科学英文版》2004,9(5):542-546
The demand for individualized teaching from Elearning websites is rapidly increasing due to the huge differences existed among Web learners. A method for clusteringWeb learners based on rough set is proposed. The basic ideaof the method is to reduce the learning auributes prior to clustering, and therefore the clustering of Web learners iscarried out in a relative low-dimensional space. Using thismethod, the E-learning websites can arrange correspondingleaching content for different clusters of learners so that thelearners‘ individual requirements can be more satisfied. 相似文献
12.
针对粗糙集理论中属性约简问题,提出了一种基于扫描向量的属性约简方法.根据粗糙集理论知识,定义了一个新概念--差别向量,利用差别向量将信息表转换成差别向量组;根据差别向量的结构特征,定义了差别向量加法法则;运用这个加法法则仅需对差别向量组扫描一次,就可以形成结构简洁却能代表原信息表属性特征的扫描向量.以扫描向量中的属性频率项作为属性约简搜索的启发信息,提高了属性约简效率.数值实例及数据库测试的结果表明该属性约简算法是有效可行的. 相似文献
13.
提出了基于断点辨别力的粗糙集离散化算法通过分析候选断点与决策类之间的相关性,定义了候选断点对决策类的辨别力,并以此作为断点重要性的度量,实现连续属性的离散化。离散化后的决策系统不改变原有的相容性,而且能最大限度地保留有用信息。采用多组数据对该算法的性能进行了检验,并与其它算法做了对比实验。实验结果表明该算法是有效的,而且当候选断点个数增多时仍具有较高的计算效率 相似文献
14.
目前常用的离散算法多为单属性离散化算法.利用该类算法对多维连续属性进行离散化时,逐次对单个属性进行离散化,割裂了多维属性之间的关系.基于此提出了一种基于遗传算法和变精度粗糙集的多属性离散化算法.该算法基于变精度粗糙集所具有的较好数据分类容错和抗噪能力,通过变精度粗糙集近似分类精度建立遗传算法适宜度评价函数,并利用遗传算法在多维连续属性候选断点集上寻找最优断点子集.基于UCI数据集比较了所提算法与多种常用的离散化算法的差异,实验结果表明,该算法可以获得相对较好的离散化效果. 相似文献
15.
基于粗集理论的数据离散化技术研究 总被引:2,自引:0,他引:2
信息系统连续型属性值的离散化对决策规则或决策树的学习具有非常重要的意义,它能够提高系统对样本的聚类能力,增强系统抗数据噪音的能力,减少机器学习算法的时间和空间开销,提高其学习精度。粗集是有效的数据离散化工具。对基于粗集理论的数据离散化方法进行了深入研究,分析其特征,评述其研究进展,并通过仿真实验研究了几种典型的启发式离散化算法的性能。其结果对发展新的离散化技术或为特定应用选择合适算法都有参考价值。 相似文献
16.
基于粗集理论的数据离散化技术研究 总被引:3,自引:0,他引:3
信息系统连续型属性值的离散化对决策规则或决策树的学习具有非常重要的意义。它能够提高系统对样本的聚类能力,增强系统抗数据噪音的能力,减少机器学习算法的时间和空间开销,提高其学习精度。粗集是有效的数据离散化工具。对基于粗集理论的数据离散化方法进行了深入研究,分析其特征,评述其研究进展,并通过仿真实验研究了几种典型的启发式离散化算法的性能。其结果对发展新的离散化技术或为特定应用选择合适算法都有参考价值。 相似文献
17.
基于粗糙集理论的表情识别研究 总被引:1,自引:1,他引:1
包括情感计算和情感识别在内,以人为中心,对人的情感和认知的研究是目前人工智能领域的一个热点研究方向.以粗糙集理论为基础,研究了粗糙集属性约简算法,并把粗糙集属性约简算法作为一种人脸表情识别系统的特征选择方法,对人脸表情识别的重要特征进行研究,并提出了一种RS+SVM的人脸表情识别方法.仿真实验结果表明,粗糙集属性约简算法能发现人脸表情的重要特征,并基于这些特征可以得到很好的表情识别结果. 相似文献