首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 696 毫秒
1.
Zhitenev NB  Fulton TA  Yacoby A  Hess HF  Pfeiffer LN  West KW 《Nature》2000,404(6777):473-476
The concept of electron localization has long been accepted to be essential to the physics of the quantum Hall effect in a two-dimensional electron gas. The exact quantization of the Hall resistance and the zero of the diagonal resistance over a range of filling factors close to integral are attributed to the localization of electronic states at the Fermi level in the interior of the gas. As the electron density is changed, charging of the individual localized states may occur by single-electron jumps, causing associated oscillations in the local electrostatic potential. Here we search for such a manifestation of localized states in the quantum Hall regime, using a scanning electrometer probe. We observe localized potential signals, at numerous locations, that oscillate with changing electron density. In general, the corresponding spatial patterns are complex, but well-defined objects are often seen which evidently arise from individual localized states. These objects interact, and at times form a lattice-like arrangement.  相似文献   

2.
Dial OE  Ashoori RC  Pfeiffer LN  West KW 《Nature》2007,448(7150):176-179
Spectroscopic methods involving the sudden injection or ejection of electrons in materials are a powerful probe of electronic structure and interactions. These techniques, such as photoemission and tunnelling, yield measurements of the 'single-particle' density of states spectrum of a system. This density of states is proportional to the probability of successfully injecting or ejecting an electron in these experiments. It is equal to the number of electronic states in the system able to accept an injected electron as a function of its energy, and is among the most fundamental and directly calculable quantities in theories of highly interacting systems. However, the two-dimensional electron system (2DES), host to remarkable correlated electron states such as the fractional quantum Hall effect, has proved difficult to probe spectroscopically. Here we present an improved version of time-domain capacitance spectroscopy that allows us to measure the single-particle density of states of a 2DES with unprecedented fidelity and resolution. Using the method, we perform measurements of a cold 2DES, providing direct measurements of interesting correlated electronic effects at energies that are difficult to reach with other techniques; these effects include the single-particle exchange-enhanced spin gap, single-particle lifetimes in the quantum Hall system, and exchange splitting of Landau levels not at the Fermi surface.  相似文献   

3.
The self-assembly of semiconductor quantum dots has opened up new opportunities in photonics. Quantum dots are usually described as 'artificial atoms', because electron and hole confinement gives rise to discrete energy levels. This picture can be justified from the shell structure observed as a quantum dot is filled either with excitons (bound electron-hole pairs) or with electrons. The discrete energy levels have been most spectacularly exploited in single photon sources that use a single quantum dot as emitter. At low temperatures, the artificial atom picture is strengthened by the long coherence times of excitons in quantum dots, motivating the application of quantum dots in quantum optics and quantum information processing. In this context, excitons in quantum dots have already been manipulated coherently. We show here that quantum dots can also possess electronic states that go far beyond the artificial atom model. These states are a coherent hybridization of localized quantum dot states and extended continuum states: they have no analogue in atomic physics. The states are generated by the emission of a photon from a quantum dot. We show how a new version of the Anderson model that describes interactions between localized and extended states can account for the observed hybridization.  相似文献   

4.
Osterloh A  Amico L  Falci G  Fazio R 《Nature》2002,416(6881):608-610
Classical phase transitions occur when a physical system reaches a state below a critical temperature characterized by macroscopic order. Quantum phase transitions occur at absolute zero; they are induced by the change of an external parameter or coupling constant, and are driven by quantum fluctuations. Examples include transitions in quantum Hall systems, localization in Si-MOSFETs (metal oxide silicon field-effect transistors; ref. 4) and the superconductor-insulator transition in two-dimensional systems. Both classical and quantum critical points are governed by a diverging correlation length, although quantum systems possess additional correlations that do not have a classical counterpart. This phenomenon, known as entanglement, is the resource that enables quantum computation and communication. The role of entanglement at a phase transition is not captured by statistical mechanics-a complete classification of the critical many-body state requires the introduction of concepts from quantum information theory. Here we connect the theory of critical phenomena with quantum information by exploring the entangling resources of a system close to its quantum critical point. We demonstrate, for a class of one-dimensional magnetic systems, that entanglement shows scaling behaviour in the vicinity of the transition point.  相似文献   

5.
Jehl X  Sanquer M  Calemczuk R  Mailly D 《Nature》2000,405(6782):50-53
Shot noise refers to the fluctuations in electrical current through a device arising from the discrete nature of the charge-carrying particles. Recent experiments have exploited the fact that the shot noise is proportional to the charge of the carriers to establish fractional quantization of quasiparticles in the fractional quantum Hall effect. By a similar argument, it is expected that when a superconducting reservoir emits Cooper pairs, (which have a charge twice that of an electron) into a short normal-metal wire, the shot noise should be double that obtained for a normal-metal reservoir. Although the charge of Cooper pairs has been well established by flux quantization and tunnel experiments, doubling of their shot noise has not yet been observed. Here we report a shot-noise experiment using a short diffusive normal-metal superconductor contact, in which we confirm the predicted noise behaviour for double charges. The measurements, taken over a large range of bias current, establish that phase coherence is not required to observe the effect.  相似文献   

6.
Hsieh D  Qian D  Wray L  Xia Y  Hor YS  Cava RJ  Hasan MZ 《Nature》2008,452(7190):970-974
When electrons are subject to a large external magnetic field, the conventional charge quantum Hall effect dictates that an electronic excitation gap is generated in the sample bulk, but metallic conduction is permitted at the boundary. Recent theoretical models suggest that certain bulk insulators with large spin-orbit interactions may also naturally support conducting topological boundary states in the quantum limit, which opens up the possibility for studying unusual quantum Hall-like phenomena in zero external magnetic fields. Bulk Bi(1-x)Sb(x) single crystals are predicted to be prime candidates for one such unusual Hall phase of matter known as the topological insulator. The hallmark of a topological insulator is the existence of metallic surface states that are higher-dimensional analogues of the edge states that characterize a quantum spin Hall insulator. In addition to its interesting boundary states, the bulk of Bi(1-x)Sb(x) is predicted to exhibit three-dimensional Dirac particles, another topic of heightened current interest following the new findings in two-dimensional graphene and charge quantum Hall fractionalization observed in pure bismuth. However, despite numerous transport and magnetic measurements on the Bi(1-x)Sb(x) family since the 1960s, no direct evidence of either topological Hall states or bulk Dirac particles has been found. Here, using incident-photon-energy-modulated angle-resolved photoemission spectroscopy (IPEM-ARPES), we report the direct observation of massive Dirac particles in the bulk of Bi(0.9)Sb(0.1), locate the Kramers points at the sample's boundary and provide a comprehensive mapping of the Dirac insulator's gapless surface electron bands. These findings taken together suggest that the observed surface state on the boundary of the bulk insulator is a realization of the 'topological metal'. They also suggest that this material has potential application in developing next-generation quantum computing devices that may incorporate 'light-like' bulk carriers and spin-textured surface currents.  相似文献   

7.
Zhang Y  Tan YW  Stormer HL  Kim P 《Nature》2005,438(7065):201-204
When electrons are confined in two-dimensional materials, quantum-mechanically enhanced transport phenomena such as the quantum Hall effect can be observed. Graphene, consisting of an isolated single atomic layer of graphite, is an ideal realization of such a two-dimensional system. However, its behaviour is expected to differ markedly from the well-studied case of quantum wells in conventional semiconductor interfaces. This difference arises from the unique electronic properties of graphene, which exhibits electron-hole degeneracy and vanishing carrier mass near the point of charge neutrality. Indeed, a distinctive half-integer quantum Hall effect has been predicted theoretically, as has the existence of a non-zero Berry's phase (a geometric quantum phase) of the electron wavefunction--a consequence of the exceptional topology of the graphene band structure. Recent advances in micromechanical extraction and fabrication techniques for graphite structures now permit such exotic two-dimensional electron systems to be probed experimentally. Here we report an experimental investigation of magneto-transport in a high-mobility single layer of graphene. Adjusting the chemical potential with the use of the electric field effect, we observe an unusual half-integer quantum Hall effect for both electron and hole carriers in graphene. The relevance of Berry's phase to these experiments is confirmed by magneto-oscillations. In addition to their purely scientific interest, these unusual quantum transport phenomena may lead to new applications in carbon-based electronic and magneto-electronic devices.  相似文献   

8.
Kitamura H  Tsuneyuki S  Ogitsu T  Miyake T 《Nature》2000,404(6775):259-262
Solid hydrogen, a simple system consisting only of protons and electrons, exhibits a variety of structural phase transitions at high pressures. Experimental studies based on static compression up to about 230 GPa revealed three relevant phases of solid molecular hydrogen: phase I (high-temperature, low-pressure phase), phase II (low-temperature phase) and phase III (high-pressure phase). Spectroscopic data suggest that symmetry breaking, possibly related to orientational ordering, accompanies the transition into phases II and III. The boundaries dividing the three phases exhibit a strong isotope effect, indicating that the quantum-mechanical properties of hydrogen nuclei are important. Here we report the quantum distributions of protons in the three phases of solid hydrogen, obtained by a first-principles path-integral molecular dynamics method. We show that quantum fluctuations of protons effectively hinder molecular rotation--that is, a quantum localization occurs. The obtained crystal structures have entirely different symmetries from those predicted by the conventional simulations which treat protons classically.  相似文献   

9.
Stewart JT  Gaebler JP  Jin DS 《Nature》2008,454(7205):744-747
Ultracold atomic gases provide model systems in which to study many-body quantum physics. Recent experiments using Fermi gases have demonstrated a phase transition to a superfluid state with strong interparticle interactions. This system provides a realization of the 'BCS-BEC crossover' connecting the physics of Bardeen-Cooper-Schrieffer (BCS) superconductivity with that of Bose-Einstein condensates (BECs). Although many aspects of this system have been investigated, it has not yet been possible to measure the single-particle excitation spectrum (a fundamental property directly predicted by many-body theories). Here we use photoemission spectroscopy to directly probe the elementary excitations and energy dispersion in a strongly interacting Fermi gas of (40)K atoms. In the experiments, a radio-frequency photon ejects an atom from the strongly interacting system by means of a spin-flip transition to a weakly interacting state. We measure the occupied density of single-particle states at the cusp of the BCS-BEC crossover and on the BEC side of the crossover, and compare these results to that for a nearly ideal Fermi gas. We show that, near the critical temperature, the single-particle spectral function is dramatically altered in a way that is consistent with a large pairing gap. Our results probe the many-body physics in a way that could be compared to data for the high-transition-temperature superconductors. As in photoemission spectroscopy for electronic materials, our measurement technique for ultracold atomic gases directly probes low-energy excitations and thus can reveal excitation gaps and/or pseudogaps. Furthermore, this technique can provide an analogue of angle-resolved photoemission spectroscopy for probing anisotropic systems, such as atoms in optical lattice potentials.  相似文献   

10.
The Kondo effect--a many-body phenomenon in condensed-matter physics involving the interaction between a localized spin and free electrons--was discovered in metals containing small amounts of magnetic impurities, although it is now recognized to be of fundamental importance in a wide class of correlated electron systems. In fabricated structures, the control of single, localized spins is of technological relevance for nanoscale electronics. Experiments have already demonstrated artificial realizations of isolated magnetic impurities at metallic surfaces, nanoscale magnets, controlled transitions between two-electron singlet and triplet states, and a tunable Kondo effect in semiconductor quantum dots. Here we report an unexpected Kondo effect in a few-electron quantum dot containing singlet and triplet spin states, whose energy difference can be tuned with a magnetic field. We observe the effect for an even number of electrons, when the singlet and triplet states are degenerate. The characteristic energy scale is much larger than in the ordinary spin-1/2 case.  相似文献   

11.
Fujisawa T  Austing DG  Tokura Y  Hirayama Y  Tarucha S 《Nature》2002,419(6904):278-281
The strength of radiative transitions in atoms is governed by selection rules that depend on the occupation of atomic orbitals with electrons. Experiments have shown similar electron occupation of the quantized energy levels in semiconductor quantum dots--often described as artificial atoms. But unlike real atoms, the confinement potential of quantum dots is anisotropic, and the electrons can easily couple with phonons of the material. Here we report electrical pump-and-probe experiments that probe the allowed and 'forbidden' transitions between energy levels under phonon emission in quantum dots with one or two electrons (artificial hydrogen and helium atoms). The forbidden transitions are in fact allowed by higher-order processes where electrons flip their spin. We find that the relaxation time is about 200 micro s for forbidden transitions, 4 to 5 orders of magnitude longer than for allowed transitions. This indicates that the spin degree of freedom is well separated from the orbital degree of freedom, and that the total spin in the quantum dots is an excellent quantum number. This is an encouraging result for potential applications of quantum dots as basic entities for spin-based quantum information storage.  相似文献   

12.
Anderson localization of a non-interacting Bose-Einstein condensate   总被引:1,自引:0,他引:1  
Anderson localization of waves in disordered media was originally predicted fifty years ago, in the context of transport of electrons in crystals. The phenomenon is much more general and has been observed in a variety of systems, including light waves. However, Anderson localization has not been observed directly for matter waves. Owing to the high degree of control over most of the system parameters (in particular the interaction strength), ultracold atoms offer opportunities for the study of disorder-induced localization. Here we use a non-interacting Bose-Einstein condensate to study Anderson localization. The experiment is performed with a one-dimensional quasi-periodic lattice-a system that features a crossover between extended and exponentially localized states, as in the case of purely random disorder in higher dimensions. Localization is clearly demonstrated through investigations of the transport properties and spatial and momentum distributions. We characterize the crossover, finding that the critical disorder strength scales with the tunnelling energy of the atoms in the lattice. This controllable system may be used to investigate the interplay of disorder and interaction (ref. 7 and references therein), and to explore exotic quantum phases.  相似文献   

13.
 美国物理学家索利斯(David J.Thouless)、霍尔丹(F.Duncan M.Haldane)、科斯德里茨(J.Michael Kosterlitz)因“关于拓扑相变和物质拓扑相的理论发现”获得2016年度诺贝尔物理学奖。介绍了这3位诺贝尔物理学奖获得者的学术经历,并从拓扑与拓扑相变、量子霍尔效应中的拓扑、1维量子反铁磁与对称性保护的拓扑态等方面探析拓扑相变和物质拓扑相理论发现的科学意义。  相似文献   

14.
Superposition is one of the most distinctive features of quantum theory and has been demonstrated in numerous single-particle interference experiments. Quantum entanglement, the coherent superposition of states in multi-particle systems, yields more complex phenomena. One important type of multi-particle experiment uses path-entangled number states, which exhibit pure higher-order interference and the potential for applications in metrology and imaging; these include quantum interferometry and spectroscopy with phase sensitivity at the Heisenberg limit, or quantum lithography beyond the classical diffraction limit. It has been generally understood that in optical implementations of such schemes, lower-order interference effects always decrease the overall performance at higher particle numbers. Such experiments have therefore been limited to two photons. Here we overcome this limitation, demonstrating a four-photon interferometer based on linear optics. We observe interference fringes with a periodicity of one-quarter of the single-photon wavelength, confirming the presence of a four-particle mode-entangled state. We anticipate that this scheme should be extendable to arbitrary photon numbers, holding promise for realizable applications with entanglement-enhanced performance.  相似文献   

15.
It is occasionally possible to interpret strongly interacting many-body systems within a single-particle framework by introducing suitable fictitious entities, or 'quasi-particles'. A notable recent example of the successful application of such an approach is for a two-dimensional electron system that is exposed to a strong perpendicular magnetic field. The conduction properties of the system are governed by electron-electron interactions, which cause the fractional quantum Hall effect. Composite fermions, electrons that are dressed with magnetic flux quanta pointing opposite to the applied magnetic field, were identified as apposite quasi-particles that simplify our understanding of the fractional quantum Hall effect. They precess, like electrons, along circular cyclotron orbits, but with a diameter determined by a reduced effective magnetic field. The frequency of their cyclotron motion has hitherto remained enigmatic, as the effective mass is no longer related to the band mass of the original electrons and is entirely generated from electron-electron interactions. Here we demonstrate enhanced absorption of a microwave field in the composite fermion regime, and interpret it as a resonance with the frequency of their circular motion. From this inferred cyclotron resonance, we derive a composite fermion effective mass that varies from 0.7 to 1.2 times that of the electron mass in vacuum as their density is tuned from 0.6 x 10(11) cm(-2) to 1.2 x 10(11) cm(-2).  相似文献   

16.
The effect of quantum statistics in quantum gases and liquids results in observable collective properties among many-particle systems. One prime example is Bose-Einstein condensation, whose onset in a quantum liquid leads to phenomena such as superfluidity and superconductivity. A Bose-Einstein condensate is generally defined as a macroscopic occupation of a single-particle quantum state, a phenomenon technically referred to as off-diagonal long-range order due to non-vanishing off-diagonal components of the single-particle density matrix. The wavefunction of the condensate is an order parameter whose phase is essential in characterizing the coherence and superfluid phenomena. The long-range spatial coherence leads to the existence of phase-locked multiple condensates in an array of superfluid helium, superconducting Josephson junctions or atomic Bose-Einstein condensates. Under certain circumstances, a quantum phase difference of pi is predicted to develop among weakly coupled Josephson junctions. Such a meta-stable pi-state was discovered in a weak link of superfluid 3He, which is characterized by a 'p-wave' order parameter. The possible existence of such a pi-state in weakly coupled atomic Bose-Einstein condensates has also been proposed, but remains undiscovered. Here we report the observation of spontaneous build-up of in-phase ('zero-state') and antiphase ('pi-state') 'superfluid' states in a solid-state system; an array of exciton-polariton condensates connected by weak periodic potential barriers within a semiconductor microcavity. These in-phase and antiphase states reflect the band structure of the one-dimensional polariton array and the dynamic characteristics of metastable exciton-polariton condensates.  相似文献   

17.
Scarola VW  Park K  Jain JK 《Nature》2000,406(6798):863-865
When confined to two dimensions and exposed to a strong magnetic field, electrons screen the Coulomb interaction in a topological fashion; they capture an even number of quantum vortices and transform into particles called 'composite fermions' (refs 1-3). The fractional quantum Hall effect occurs in such a system when the ratio (or 'filling factor, nu) of the number of electrons and the degeneracy of their spin-split energy states (the Landau levels) takes on particular values. The Landau level filling nu = 1/2 corresponds to a metallic state in which the composite fermions form a gapless Fermi sea. But for nu = 5/2, a fractional quantum Hall effect is observed instead; this unexpected result is the subject of considerable debate and controversy. Here we investigate the difference between these states by considering the theoretical problem of two composite fermions on top of a fully polarized Fermi sea of composite fermions. We find that they undergo Cooper pairing to form a p-wave bound state at nu = 5/2, but not at nu = 1/2. In effect, the repulsive Coulomb interaction between electrons is overscreened in the nu = 5/2 state by the formation of composite fermions, resulting in a weak, attractive interaction.  相似文献   

18.
Potok RM  Rau IG  Shtrikman H  Oreg Y  Goldhaber-Gordon D 《Nature》2007,446(7132):167-171
Some of the most intriguing problems in solid-state physics arise when the motion of one electron dramatically affects the motion of surrounding electrons. Traditionally, such highly correlated electron systems have been studied mainly in materials with complex transition metal chemistry. Over the past decade, researchers have learned to confine one or a few electrons within a nanometre-scale semiconductor 'artificial atom', and to understand and control this simple system in detail(3). Here we combine artificial atoms to create a highly correlated electron system within a nano-engineered semiconductor structure. We tune the system in situ through a quantum phase transition between two distinct states, each a version of the Kondo state, in which a bound electron interacts with surrounding mobile electrons. The boundary between these competing Kondo states is a quantum critical point-namely, the exotic and previously elusive two-channel Kondo state, in which electrons in two reservoirs are entangled through their interaction with a single localized spin.  相似文献   

19.
Energy spectra of quantum rings.   总被引:1,自引:0,他引:1  
Quantum mechanical experiments in ring geometries have long fascinated physicists. Open rings connected to leads, for example, allow the observation of the Aharonov-Bohm effect, one of the best examples of quantum mechanical phase coherence. The phase coherence of electrons travelling through a quantum dot embedded in one arm of an open ring has also been demonstrated. The energy spectra of closed rings have only recently been studied by optical spectroscopy. The prediction that they allow persistent current has been explored in various experiments. Here we report magnetotransport experiments on closed rings in the Coulomb blockade regime. Our experiments show that a microscopic understanding of energy levels, so far limited to few-electron quantum dots, can be extended to a many-electron system. A semiclassical interpretation of our results indicates that electron motion in the rings is governed by regular rather than chaotic motion, an unexplored regime in many-electron quantum dots. This opens a way to experiments where even more complex structures can be investigated at a quantum mechanical level.  相似文献   

20.
Venkatachalam V  Yacoby A  Pfeiffer L  West K 《Nature》2011,469(7329):185-188
Electrons moving in two dimensions under the influence of strong magnetic fields effectively lose their kinetic energy and display exotic behaviour dominated by Coulomb forces. When the ratio of electrons to magnetic flux quanta in the system (ν) is near 5/2, the electrons are predicted to condense into a correlated phase with fractionally charged quasiparticles and a ground-state degeneracy that grows exponentially as these quasiparticles are introduced. The only way for electrons to transform between the many ground states would be to braid the fractional excitations around each other. This property has been proposed as the basis of a fault-tolerant quantum computer. Here we present observations of localized quasiparticles at ν = 5/2, confined to puddles by disorder. Using a local electrometer to compare how quasiparticles at ν = 5/2 and ν = 7/3 charge these puddles, we were able to extract the ratio of local charges for these states. Averaged over several disorder configurations and samples, we found the ratio to be 4/3, suggesting that the local charges are = e/3 and = e/4, where e is the charge of an electron. This is in agreement with theoretical predictions for a paired state at ν = 5/2. Confirming the existence of localized e/4 quasiparticles shows that proposed interferometry experiments to test statistics and computational ability of the state at ν = 5/2 would be possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号