首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Shiow LR  Rosen DB  Brdicková N  Xu Y  An J  Lanier LL  Cyster JG  Matloubian M 《Nature》2006,440(7083):540-544
Naive lymphocytes continually enter and exit lymphoid organs in a recirculation process that is essential for immune surveillance. During immune responses, the egress process can be shut down transiently. When this occurs locally it increases lymphocyte numbers in the responding lymphoid organ; when it occurs systemically it can lead to immunosuppression as a result of the depletion of recirculating lymphocytes. Several mediators of the innate immune system are known to cause shutdown, including interferon alpha/beta (IFN-alpha/beta) and tumour necrosis factor, but the mechanism has been unclear. Here we show that treatment with the IFN-alpha/beta inducer polyinosine polycytidylic acid (hereafter 'poly(I:C)') inhibited egress by a mechanism that was partly lymphocyte-intrinsic. The transmembrane C-type lectin CD69 was rapidly induced and CD69-/- cells were poorly retained in lymphoid tissues after treatment with poly(I:C) or infection with lymphocytic choriomeningitis virus. Lymphocyte egress requires sphingosine 1-phosphate receptor-1 (S1P1), and IFN-alpha/beta was found to inhibit lymphocyte responsiveness to S1P. By contrast, CD69-/- cells retained S1P1 function after exposure to IFN-alpha/beta. In coexpression experiments, CD69 inhibited S1P1 chemotactic function and led to downmodulation of S1P1. In a reporter assay, S1P1 crosslinking led to co-crosslinking and activation of a CD69-CD3zeta chimaera. CD69 co-immunoprecipitated with S1P1 but not the related receptor, S1P3. These observations indicate that CD69 forms a complex with and negatively regulates S1P1 and that it functions downstream of IFN-alpha/beta, and possibly other activating stimuli, to promote lymphocyte retention in lymphoid organs.  相似文献   

3.
L C Burkly  D Lo  O Kanagawa  R L Brinster  R A Flavell 《Nature》1989,342(6249):564-566
T-cell reactivity to the class II major histocompatibility complex I-E antigen is associated with T-cell antigen receptors containing the V beta gene segments V beta 17a and V beta 5. Mice expressing I-E with the normal tissue distribution (on B cells, macrophages, dendritic cells and thymic epithelium) induce tolerance to self I-E by clonal deletion in the thymus. By contrast, we find that transgenic INS-I-E mice that express I-E on pancreatic beta-cells, but not in the thymus or peripheral lymphoid organs, are tolerant to I-E but have not deleted V beta 5- and V beta 17a-bearing T cells. Moreover, whereas T-cell populations from nontransgenic mice proliferate in response to receptor crosslinking with V beta 5- and V beta 17a-specific antibodies, T cells from INS-I-E mice do not. Thus, our experiments provide direct evidence that T-cell tolerance by clonal paralysis does occur during normal T-cell development in vivo.  相似文献   

4.
Self-reactive gamma delta T cells are eliminated in the thymus   总被引:21,自引:0,他引:21  
The genes encoding a gamma delta T-cell receptor specific for a major histocompatibility complex class I molecule encoded by the TIa locus have been inserted into the mouse germ line. In mice that do not express the TIa-encoded determinant, transgenic gamma delta T cells are a functional component of the CD4-CD8- 'double-negative' T cells in the thymus and peripheral lymphoid organs. In mice that express the TIa-encoded determinant, there are no transgenic gamma delta T cells in peripheral lymphoid organs, and there are no thymocytes expressing normal levels of the transgenic gamma delta T-cell receptor.  相似文献   

5.
R Kingston  E J Jenkinson  J J Owen 《Nature》1985,317(6040):811-813
There is much interest in early T-cell development, particularly in relation to the diversification of the T-cell receptor repertoire and the elucidation of the lineage relationships between T-cell populations in the thymus and peripheral lymphoid organs. However, the requirements for the growth of the earliest thymic T-cell precursor in 13-14-day mouse embryo thymus in isolation from the thymic environment are unknown. Proliferation and maturation of such cells are not sustained either in the presence of monolayers of thymic stromal cells or by the addition of interleukin-2 (IL-2), despite the expression of receptors for this growth factor on a proportion of thymocytes displaying the immature Thy 1+ Lyt-2-L3T4- phenotype in the embryonic thymus. In contrast, when maintained within the intact thymic environment in organ cultures, 13-14-day thymic stem cells do show a pattern of surface marker and functional development similar to that seen in vivo, suggesting that short-range growth signals, perhaps necessitating direct contact with organized epithelial cells, are required. We have shown, by exploiting the selective toxicity of deoxyguanosine (dGuo) for early T cells, that this organ culture system can be manipulated to produce alymphoid lobes that can be recolonized from a source of precursors in a transfilter system. We now show that recolonization of alymphoid lobes can also be achieved by association with T-cell precursors in hanging drops, allowing recolonization by exposure to defined numbers of precursors, including a single micromanipulated stem cell. Analysis of T-cell marker expression in these cultures shows that a single thymic stem cell can produce progeny of distinct phenotypes, suggesting that these marker-defined populations are not derived from separate prethymic precursors, but arise within the thymus.  相似文献   

6.
T lymphocytes are predisposed to recognition of foreign protein fragments bound to cell-surface molecules encoded by the major histocompatibility complex (MHC). There is now compelling evidence that this specificity is a consequence of a selection process operating on developing T lymphocytes in the thymus. As a result of this positive selection, thymocytes that express antigen receptors with a threshold affinity for self MHC-encoded glycoproteins preferentially emigrate from the thymus and seed peripheral lymphoid organs. The specificity for both foreign antigen and MHC molecules is imparted by the alpha and beta chains of the T-cell antigen receptor (TCR). Two other T-cell surface proteins, CD4 and CD8, which bind non-polymorphic regions of class II and class I MHC molecules respectively, are also involved in these recognition events and play an integral role in thymic selection. In order to elucidate the developmental pathways of class II MHC-restricted T cells in relation to these essential accessory molecules, we have produced TCR-transgenic mice expressing a receptor specific for a fragment of pigeon cytochrome c and the Ek (class II MHC) molecule. The transgenic TCR is expressed on virtually all T cells in mice expressing Ek. The thymuses of these mice contain an abnormally high percentage of mature CD4+CD8- cells. In addition, the peripheral T-cell population is almost exclusively CD4+, demonstrating that the MHC specificity of the TCR determines the phenotype of T cells during selection in the thymus.  相似文献   

7.
Role of self-peptides in positively selecting the T-cell repertoire   总被引:9,自引:0,他引:9  
J Nikoli?-Zugi?  M J Bevan 《Nature》1990,344(6261):65-67
The fate of an immature thymocyte is determined by the specificity of its alpha beta T-cell receptor. Only cells expressing receptors that interact with sufficient affinity with major histocompatibility complex (MHC) molecules expressed on thymus epithelial cells are positively selected and go on to mature and seed the peripheral lymphoid organs. The H-2Kb class-I MHC molecule positively selects for the maturation of cytotoxic T lymphocytes that will respond in the periphery to H-2Kb cells presenting a foreign peptide. We have now analysed the ability of variant H-2Kb molecules to positively select T-cells that respond to H-2Kb with ovalbumin. Our results indicate that self-peptides, presented in the groove of the class-I molecule on thymus epithelial cells, are critically involved in positive selection of the T-cell repertoire. Furthermore, the ability of four different H-2Kb variants to select this response in the thymus correlates with their ability to present the ovalbumin peptide, indicating that a self-peptide mimic of the foreign peptide could be involved in positive selection.  相似文献   

8.
H von Boehmer  A Crisanti  P Kisielow  W Haas 《Nature》1985,314(6011):539-540
The growth of mature T cells is regulated by receptors for interleukin-2 (IL-2) and by IL-2 itself. Binding of antigen to T-cell antigen receptors induces the expression of IL-2 receptors, and binding of IL-2 to these receptors induces transferrin receptor expression and is sufficient to promote the growth of T cells for several days. However, nothing is known about the growth requirements of pre-T cells. We have therefore studied the dividing population of T-cell precursors which carry the Thy-1 surface antigen, but lack surface antigens Ly2 and L3T4; these cells are present in 14-day-old embryonic thymus. If the thymus is removed at this stage and placed in organ culture, all lymphocyte subpopulations normally present in thymuses of adult mice develop in vitro, that is, the nonfunctional Ly2+, L3T4+ population and the functional Ly2+, L3T4- and Ly2-, L3T4+ populations. We now report that, in contrast to their progeny, the early Ly2-, L3T4- cells express large amounts of IL-2 receptors, but most of them do not grow in IL-2-containing media outside the thymus. In contrast to dividing mature T cells, most fetal thymocytes express low amounts of transferrin receptors.  相似文献   

9.
E J Jenkinson  R Kingston  J J Owen 《Nature》1987,329(6135):160-162
During development, lymphoid stem cells migrate into the thymic rudiment where they proliferate, rearrange their antigen receptor genes and become differentiated into functionally mature T cells. At present, the regulation of these processes is poorly understood, although recent studies have shown that early fetal and adult immature thymocytes express receptors for the T-cell growth factor, interleukin-2 (IL-2). We now present direct evidence that IL-2 receptors have a function in intra-thymic development by demonstrating that proliferation and the generation of cells expressing the T-cell antigen receptor (alpha beta TCR), which is responsible for the recognition of antigens in the context of MHC, are inhibited when antibodies to IL-2 receptors are added to fetal thymus organ cultures. The inhibition is specific in that it does not affect pre-thymic stem cells and can be partially reversed by addition of exogenous recombinant IL-2.  相似文献   

10.
Expression and function of interleukin-2 receptors on immature thymocytes   总被引:4,自引:0,他引:4  
D H Raulet 《Nature》1985,314(6006):101-103
T-cell differentiation represents a unique system for studying mechanisms of lymphoid development because it occurs in a segregated site, the thymus, in which distinct subpopulations of thymocytes at various stages of differentiation can be defined on the basis of the differential expression of T-cell surface antigens as well as topography. There is particular interest in thymocyte differentiation because the genotype of radioresistant thymus cells influences the specificity repertoire of the pool of T cells that mature therein: that is, the major histocompatibility complex (MHC) antigens expressed by thymus cells bias the pool of maturing T cells towards recognition of antigens in the 'context' of the products of that MHC haplotype ('thymus education'; refs 1-3). Immature T cells with affinity for thymus MHC antigens are generally thought to undergo a stage of positive selection in the thymus. Here we report that 30% of cells in the least mature adult thymocyte subpopulation yet defined, as well as 50% of immature fetal thymocytes, express receptors for interleukin-2 (IL-2, the T-cell growth factor) without in vitro induction, and will proliferate vigorously in an IL-2-dependent fashion if provided with co-stimulating mitogen.  相似文献   

11.
For a wide variety of microbial pathogens, the outcome of the infection is indeterminate. In some individuals the microbe is cleared, but in others it establishes a chronic infection, and the factors that tip this balance are often unknown. In a widely used model of chronic viral infection, C57BL/6 mice clear the Armstrong strain of lymphocytic choriomeningitis virus (LCMV), but the clone 13 strain persists. Here we show that the Armstrong strain induces a profound lymphopenia at days 1-3 after infection, but the clone 13 strain does not. If we transiently augment lymphopenia by treating the clone-13-infected mice with the drug FTY720 at days 0-2 after infection, the mice successfully clear the infection by day 30. Clearance does not occur when CD4 T cells are absent at the time of treatment, indicating that the drug is not exerting direct antiviral effects. Notably, FTY720 treatment of an already established persistent infection also leads to viral clearance. In both models, FTY720 treatment preserves or augments LCMV-specific CD4 and CD8 T-cell responses, a result that is counter-intuitive because FTY720 is generally regarded as a new immunosuppressive agent. Because FTY720 targets host pathways that are completely evolutionarily conserved, our results may be translatable into new immunotherapies for the treatment of chronic microbial infections in humans.  相似文献   

12.
D E Speiser  U Stübi  R M Zinkernagel 《Nature》1992,355(6356):170-172
T lymphocytes expressing alpha beta T-cell receptors with sufficient affinity to major histocompatibility complex (MHC) molecules expressed on thymus epithelial cells are positively selected and mature to functional T cells. But several studies have demonstrated that athymic nude mice grafted with MHC-incompatible thymuses developed T cells specific for nude host rather than thymic MHC. We examined this paradox by analysing the specificity of T lymphocytes derived from nude mice. We report here that nude T lymphocyte precursors transferred to allogeneic SCID (severe combined immunodeficiency) mice with a functioning thymus (but lacking T or B cells) generated host MHC-restricted effector T cells but also contained T cells restricted to donor MHC. If nude T cells were depleted from nude lymphohaemopoietic donor cells before or after transfer, only host MHC-specific T cells matured. The results may explain the unusual MHC specificities of nude T lymphocytes described in earlier studies and demonstrate two separate differentiation steps: in nude mice, T cells may be positively selected for self-MHC restriction specificity extrathymically; then a functional thymus is required for efficient T cell maturation.  相似文献   

13.
The extensive range of specificities of T-cell receptors is generated, as for immunoglobulins, by rearrangement of genetic information. Much valuable information about rearrangement processes has been inferred by comparing DNA from (monoclonal) lymphoid lines with germ-line DNA and, for B cells, from rearrangements in some Abelson murine leukaemia virus-transformed cell lines. However, because it is difficult to isolate and grow precursor populations, it has not proved possible to study rearrangements occurring in normal untransformed cells in vitro. Here we show that a single T-cell precursor colonizing an alymphoid thymus lobe in organ culture can generate multiple receptor beta-chain gene rearrangements. These observations provide unequivocal evidence for the intra-thymic diversification of the T-cell repertoire. They also offer the possibility of investigating rearrangement and its control in the clonal progeny of a single normal T-cell precursor without the perturbations involved in the use of viral transformation or the production of T-cell hybridomas.  相似文献   

14.
Peripheral deletion of self-reactive B cells   总被引:27,自引:0,他引:27  
D M Russell  Z Dembi?  G Morahan  J F Miller  K Bürki  D Nemazee 《Nature》1991,354(6351):308-311
B LYMPHOCYTES are key participants in the immune response because of their specificity, their ability to take up and present antigens to T cells, and their capacity to differentiate into antibody-secreting cells. To limit reactivity to self antigens, autospecific B cells can be functionally inactivated or deleted. Developing B cells that react with membrane antigens expressed in the bone marrow are deleted from the peripheral lymphocyte pool. It is important to ascertain the fate of B cells that recognize membrane autoantigens expressed exclusively on peripheral tissues because B cells in the peripheral lymphoid organs are phenotypically and functionally distinct from bone-marrow B cells. Here we show that in immunoglobulin-transgenic mice, B cells specific for major histocompatibility complex class I antigen can be deleted if they encounter membrane-bound antigen at a post-bone-marrow stage of development. This deletion may be necessary to prevent organ-specific autoimmunity.  相似文献   

15.
Much of the differentiation of murine T cells takes place in the thymus, perhaps influenced by the operation of stringent selection mechanisms whose existence has been inferred from the high rate of thymocyte turnover in the absence of extensive emigration. The origin of those 1% of total thymocytes which leave the thymus and seed the peripheral lymphoid organs is obscure. Recent thymic emigrants are functionally and phenotypically mature, and the purported greater maturity of medullary relative to cortical thymocytes is often cited a evidence for the medullary origin of thymic emigrants, a suggestion not without its critics. To approach this question, we have now isolated a a subpopulation of thymocytes expressing high levels of a receptor that mediates the homing of blood-borne lymphocytes into peripheral lymph nodes. Surprisingly, this population of cells (1-3% of total thymocytes) is both cortical and immunocompetent, containing approximately half of all thymic cytolytic T-lymphocyte precursors. The combination of homing receptor expression and immunocompetence makes this cortical population ideally suited for emigration to peripheral lymphoid organs.  相似文献   

16.
17.
The thymus is regarded as the primary site for T-cell lymphopoiesis, but very little is known about the lineage inter-relationships of cells within that organ. At least four subpopulations of mouse thymocytes can be defined on the basis of staining with monoclonal antibodies directed against the T-cell differentiation antigens Lyt-2 and L3T4 (ref. 2). Thus immunocompetent (medullary) thymocytes, like peripheral T cells, express either Lyt-2 (cytotoxic phenotype) or L3T4 (helper phenotype) but not both, whereas non-functional (cortical) thymocytes express both markers. In addition, a small subpopulation comprising 2-3% of cells in the thymus and expressing neither Lyt-2 nor L3T4 has recently been described. The latter cells have the properties of intrathymic 'stem cells' in that they are the first to appear in the embryonic thymus and at least some can be shown to give rise, both in vivo (ref. 4. and our unpublished data) and in vitro, to other thymocyte subpopulations. We show here that 50% of Lyt-2-/L3T4- cells in the adult thymus express receptors for the polypeptide growth hormone interleukin-2 (IL-2) whereas other cells in the thymus do not. Furthermore, immunohistochemical localization studies on frozen sections indicate a disperse distribution of IL-2 receptor-positive cells in both the cortex and medulla. These novel findings have potential implications in the context of current models of differentiation pathways within the thymus.  相似文献   

18.
The T-cell repertoire found in the periphery is thought to be shaped by two developmental events in the thymus that involve the antigen receptors of T lymphocytes. First, interactions between T cells and major histocompatibility complex (MHC) molecules select a T-cell repertoire skewed towards recognition of antigens in the context of self-MHC molecules. In addition, T cells that react strongly to self-MHC molecules are eliminated by a process called self-tolerance. We have recently described transgenic mice expressing the alpha beta T-cell receptor from the cytotoxic T lymphocyte 2C (ref. 11). The clone 2C was derived from a BALB.B (H-2b) anti-BALB/c (H-2d) mixed lymphocyte culture and is specific for the Ld class I MHC antigen. In transgenic H-2b mice, a large fraction of T cells in the periphery expressed the 2C T-cell receptor. These T cells were predominantly CD4-CD8+ and were able to specifically lyse target cells bearing Ld. We now report that in the periphery of transgenic mice expressing Ld, functional T cells bearing the 2C T-cell receptor were deleted. This elimination of autoreactive T cells appears to take place at or before the CD4+CD8+ stage in thymocyte development. In addition, we report that in H-2s mice, a non-autoreactive target haplotype, large numbers of CD8+ T cells bearing the 2C T-cell receptor were not found, providing strong evidence for the positive selection of the 2C T-cell receptor specificity by H-2b molecules.  相似文献   

19.
Y Takagaki  A DeCloux  M Bonneville  S Tonegawa 《Nature》1989,339(6227):712-714
The search for the genes encoding the T-cell receptor (TCR) alpha- and beta-subunits revealed a third gene gamma which shares with the alpha- and beta-genes several properties including somatic rearrangement. This gene, together with a fourth rearranging gene delta, encodes a second type of T-cell receptor, TCR gamma delta. Although TCR gamma delta-bearing T cells constitute a relatively minor subpopulation in the thymus and in peripheral lymphoid organs, they are the major lymphocytes of epidermis (dendritic epidermal cells or DEC) and of intestinal epithelium (intestinal intraepithelial lymphocytes or IEL) in mice, suggesting that at least some gamma delta T cells are important in the surveillance of a variety of epithelia. It was recently reported, however, that the TCR gamma delta on DEC has essentially no structural diversity, implying that the putative ligand is monomorphic. As this finding, if generally applicable, poses severe restrictions on the origin of the ligand, we investigated the diversity of the TCR on the second major epithelium-associated gamma delta T cells, namely IEL from mice. We report here that by contrast with the DEC gamma delta, the IEL gamma delta TCR are structurally diverse.  相似文献   

20.
Does T-cell tolerance require a dedicated antigen-presenting cell?   总被引:15,自引:0,他引:15  
P Matzinger  S Guerder 《Nature》1989,338(6210):74-76
Almost 30 years ago Burnet proposed that the immune system maintained self-tolerance by deleting autoreactive lymphocytes. Recently it has become clear that for T cells this step occurs in the thymus, where developing T cells first express their antigen-specific receptors. Here a T-cell which encounters its antigen disappears--if it is not dead, it at least stops expressing its receptors. In the periphery by contrast, encounter with antigen leads to activation and proliferation of the responding T-cell. There are two possible explanations for this difference. Either the antigen-presenting cells in the thymus are different from those in the periphery and instead of producing positive signals they directly or indirectly kill the thymocytes; or the T cells themselves are different, and like immature B cells, may die after encounter with antigen. We tested the first possibility and found that dendritic cells from spleen, which are the most potent activators of mature T cells, are also the most potent inactivators of young developing T cells. Thus it is not the antigen-presenting cell which determines whether a T-cell responds or dies, but the T-cell itself or its thymic environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号