共查询到16条相似文献,搜索用时 62 毫秒
1.
2.
针对高速移动正交频分复用系统, 提出了一种基扩展模型(basis expansion model, BEM)下基于长短期记忆(long short-term memory, LSTM)神经网络的时变信道预测方法。为了降低传统BEM的建模误差, 根据高速移动环境中不同列车在相同位置处的无线信道具有强相关性的特点, 首先基于历史时刻的信道状态信息获取最优的基函数, 并利用该基函数对信道进行建模。然后, 通过LSTM神经网络对信道基系数进行线下训练与线上预测来获取未来时刻信道信息, 大大降低了计算复杂度。在线下训练中, 将网络的逼近目标设置为信道估计值, 而不是理想的信道信息, 以增强预测模型的实用性。仿真结果表明, 相比现有方法, 新方法的计算复杂度较低, 且预测精度较高。 相似文献
3.
基于神经网络方法的大型电网短期负荷预报 总被引:1,自引:3,他引:1
电力系统负荷预报研究现状,介绍了神经网络方法应用于电力系统短期负荷预报的可行性及存在的问题。详细讨论了应用BP神经网络、共轭梯度算法改进BP神经网络方法进行电力系统短期负荷预报的算法,及在预报过程中对电网负荷数据进行预处理方法。分别应用二种方法对东北电力系统进行了72小时短期负荷预报仿真。仿真结果表明,BP神经网络训练时间长,预报精度低;而共轭梯度算法改进BP神经网络算法训练步数大大减小,缩短了网络训练时间,而且提高了预报精度。该方法可行,可用于电力系统短期负荷在线预报。 相似文献
4.
5.
为了提高短期电力负荷预测的精度,提出一种基于自适应柯西变异粒子群(ACMPSO)算法优化长短期记忆(LSTM)神经网络的短期电力负荷预测模型(ACMPSO-LSTM).针对LSTM模型参数较难选取的问题,采用ACMPSO算法进行LSTM模型参数寻优,利用非线性变化惯性权重来提高PSO算法的全局寻优能力和收敛速度,并在寻... 相似文献
6.
在轨道交通客流量快速增长的背景下,为有效评估换乘车站运营过程中动态性能,提出基于机器学习的换乘站动态性能评估方法。基于提出的有效换乘人数、换乘时间和拥挤度的动态性能评价指标,深入分析了车站动态性能的影响因素,利用考虑行车与行人的换乘车站仿真模型提供机器学习所需的时间序列数据,采用长短期记忆(long short-term memory,LSTM)的机器学习方法,建立评价指标的预测获取方法,动态获取车站在不同条件下的运营状况。以犀浦站为例,运用仿真模型构建的2.24万个样本来训练预测模型。预测结果证明了预测模型的精度,并量化了购票比例对车站动态性能的影响。所提方法能够为轨道交通换乘车站换乘组织和客运作业提供有效建议。 相似文献
7.
为解决不同人员相同操作的个体差异以及同一人员不同时间相同操作差异的问题,提出一种基于混合专家系统(mixture of experts,MoE)和长短期记忆神经网络(long short-term memory,LSTM)的倒闸操作识别方法 MoE-LSTM。基于MoE对LSTM进行集成,学习不同来源数据的特征分布。采集加速度动作数据构建倒闸操作数据集,基于滑动窗口对动作序列进行切分;将动作序列输入到MoE-LSTM中,由不同LSTM独立学习不同动作的时序依赖;通过门控网络选择对当前输入分类较好的LSTM的输出作为动作识别结果。仿真结果表明:不同LSTM对来自不同时空的动作数据都有擅长分类的特征空间。 相似文献
8.
精确的航空安全预测是科学开展安全预警的前提.航空事故不仅致因机理复杂,还存在迟滞效应,给安全样本时序信息的深度挖掘加大了难度.基于此,提出一种基于改进长短期记忆(long short-term memory,LSTM)模型的航空安全预测新方法.首先基于相关系数热图优选致因指标,再以步进搜索和Adam算法相结合的方式优化... 相似文献
9.
弹道导弹主动段长周期轨迹预报能够为导弹防御系统提供早期预警信息。传统的轨迹预报方法大多集中在导弹的自由段与再入段,通过解析法、数值积分法或函数逼近法推断未来时刻目标的状态。由于弹道导弹在主动段会受到多个未知作用力的影响,其轨迹预报相比自由段与再入段更具挑战性。为此,本文提出了一种基于长短时记忆(long short-term memeory, LSTM)网络的弹道导弹主动段轨迹预报方法。首先,根据导弹主动段动力学模型与弹道参数典型取值生成用于网络训练的大规模轨迹样本;其次,设计了基于深度LSTM网络的弹道导弹主动段轨迹递归预报方法;最后,与基于数值积分法、多项式拟合及反向传播神经网络的轨迹预报方法的实验对比,表明了所提方法在主动段轨迹预报上的优越性。 相似文献
10.
低地球轨道(low earth orbit,LEO)卫星由于其传输损耗低、地面干扰小等优点成为空天地一体化网络的重要组成部分.由于星地传输链路的时延大,现有卫星通信过程无法实时地进行信息交互,导致系统无法适应信道的变化.针对这个问题,提出了基于长短期记忆(long short-term memory,LSTM)网络的信... 相似文献
11.
针对目前雷达干扰识别方法存在人工特征提取难、强噪声环境下识别率不高的问题,提出了一种基于长短时记忆(long short-term memory, LSTM)网络和残差网络相结合的雷达有源干扰识别方法。输入有源压制干扰原始时域序列数据,搭建深度学习网络模型对不同干噪比下的干扰信号进行分类识别。仿真结果表明:在干噪比为0 dB的情况下,该方法对4类雷达有源干扰信号的识别准确率均高于98.3%,与单纯的残差网络和卷积神经网络(convolutional neural networks, CNN)等其他深度学习算法相比,具有更佳的网络性能,验证了该算法的有效性。 相似文献
12.
针对弹道导弹等超远程攻击目标的轨迹难以预测的问题,提出一种基于长短期记忆(long short-term memory, LSTM)网络与一维卷积神经网络(1-dimensional convolutional neural network, 1DCNN)的目标轨迹预测方法。首先,建立三自由度导弹运动模型,依据再入类型设计3种目标轨迹数据,构建机动数据库,解决轨迹数据的来源问题。其次,采用重复分割与滑动窗口的方法对轨迹数据进行预处理。然后,基于LSTM与1DCNN设计了一种目标类型分类网络,对目标进行初步分类。最后,基于1DCNN设计轨迹预测网络,对目标轨迹进行预测。仿真结果表明,提出的轨迹预测网络能够完成轨迹预测任务,预测误差在合理范围内。 相似文献
13.
针对现有通信辐射源个体识别方法预处理过程复杂及特征提取较难的问题,提出了一种基于堆栈式长短期记忆(long short-term memory, LSTM)网络的辐射源个体识别算法。该算法直接使用IQ时间序列信号训练LSTM网络,即可实现对通信辐射源个体的高效识别,避免了复杂的信号预处理过程。为使LSTM网络能更好地适用于通信辐射源个体识别,利用3层LSTM网络提取辐射源深层特征,并通过实验优化了网络参数。然后对该算法的实际应用泛化性进行了实验探究,结果表明该算法在其他辐射源数据集上也取得了较好的效果。最后,通过实验对算法进行了验证,结果表明相比于传统算法,在样本数较多时,该算法的识别准确率可以达到98%,而且简单快速智能,便于工程化与实用化。 相似文献
14.
针对现有通信辐射源个体识别方法预处理过程复杂及特征提取较难的问题,提出了一种基于堆栈式长短期记忆(long short-term memory, LSTM)网络的辐射源个体识别算法。该算法直接使用IQ时间序列信号训练LSTM网络,即可实现对通信辐射源个体的高效识别,避免了复杂的信号预处理过程。为使LSTM网络能更好地适用于通信辐射源个体识别,利用3层LSTM网络提取辐射源深层特征,并通过实验优化了网络参数。然后对该算法的实际应用泛化性进行了实验探究,结果表明该算法在其他辐射源数据集上也取得了较好的效果。最后,通过实验对算法进行了验证,结果表明相比于传统算法,在样本数较多时,该算法的识别准确率可以达到98%,而且简单快速智能,便于工程化与实用化。 相似文献
15.
利用传感器数据进行预测性维护是航空发动机故障预测与健康管理(prognostic and health manage-ment,PHM)的关键问题.针对发动机剩余寿命预测准确性低的问题,提出基于长短期记忆网络(long short-term memory network,LSTM)分类器的预测性维护模型.LSTM分类器... 相似文献
16.
传统的雷达高分辨距离像(high resolution range profile, HRRP)序列识别方法依赖于人工特征提取, 并且现有的深度学习方法存在梯度消失问题, 导致收敛速度慢, 识别精度低。针对上述问题, 提出一种基于注意力机制的堆叠长短时记忆(attention-based stacked long short-term memory, Attention-SLSTM)网络模型, 该模型通过堆叠多个长短时记忆(long short-term memory, LSTM)网络层, 实现了HRRP序列更深层次抽象特征的提取; 通过替换模型的激活函数, 减缓了堆叠LSTM(stacked LSTM, SLSTM)模型梯度消失问题; 引入注意力机制计算特征序列的分配权重并用于分类识别步骤, 增强了隐藏层特征的非线性表达能力。模型在雷达目标识别标准数据集MSTAR上多种不同目的的实验结果表明, 所提方法具有更快的收敛速度和更好的识别性能, 与多种现有方法对比具有更高的识别率, 证明了所提方法的正确性和有效性。 相似文献