首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
针对基于压缩域视频动作识别中精度偏低等问题,提出了一种压缩域视频动作识别新方法.主要思路是在提取压缩码流信息阶段,利用压缩视频的运动矢量和残差构造新时空特征.新时空特征不仅具有运动矢量和残差的时空关系,更兼备物体边缘清晰的特点.通过在动作识别主流数据集(HMDB-51、UCF-101)的验证,此方法计算开销相比基于传统...  相似文献   

2.
在时空兴趣点以及3D-SIFT描述的基础上,采用概率主题模型进行动作识别,结果表明:概率主题模型不仅能够实现对视频中单个动作的识别,而且对复杂情况下的视频也有一定识别能力。  相似文献   

3.
提出了一种新的基于概率主题模型的人体动作识别方法.该方法利用局部的时空兴趣点特征,采用词袋(bag of words)的方法对跑、跳、挥手等几种常见的动作进行表示.利用概率主题模型,使视频的动作类别标记对应于概率模型中的隐含变量,通过对隐变量的推断,实现对整个视频的动作分类.该算法还可以将每个兴趣点划分为不同的动作类别...  相似文献   

4.
人体行为识别是计算机视觉领域的研究热点。针对传统行为识别算法具有计算复杂度较高的问题,提出一种基于动作主视图的长短时记忆模型人体动作识别方法。将三维空间中的动作正投影到二维的平面中,降低动作空间的维度和计算复杂度,利用长短时记忆神经网络处理时序数据的能力,对人体动作进行识别。选用MSRAction 3D公开数据集验证文中算法,采用十次十折交叉验证法,该方法平均识别率达93.06%。实验结果表明,本方法在降低算法复杂度的同时,识别效果较现有的其他算法好。  相似文献   

5.
为了融合碎片化林业文本数据,解决目前林业网络知识散乱、无序和关联性不强的问题,将深度学习与知识图谱相结合,提出一种基于改进BERT和双向RNN的模型用于林业实体识别和实体关系抽取.通过基于实体Mask的BERT词向量处理,自动提取出序列中与研究领域相关的词级和语义特征,将词向量输入命名实体识别模型和实体关系提取模型训练...  相似文献   

6.
快速有效地识别出视频中的人体动作,具有极其广泛的应用前景及潜在的经济价值,深度学习的火热给视频动作自动识别带来了巨大的发展。提出了一种基于深度学习和非局域平均法的自注意时间段网络,作用于剪切好的视频片段。通过构造非局域模块并将其加入到以ResNet为基本模型的时间段网络,可以得到新模型。经过在TDAP数据集上验证,该模型可较为精确地识别出人体动作,与原有模型相比在不增加时间复杂度的前提下有一定程度的提升。  相似文献   

7.
中国非机动车出行近年来逐渐复兴并形成了复杂的混合交通流动,造成了交通运行和安全问题,因此对混合非机动车速度分布进行准确建模是重要的现实需求.该文首先介绍了利用深度神经网络进行多目标跟踪的数据采集方法,然后输入非机动车道的拍摄视频进行自动识别,高效获取实测数据;在对车速进行统计分析后,通过信息准则确定混合Gauss模型的...  相似文献   

8.
融合形状和运动特征的动作识别计算模型   总被引:1,自引:0,他引:1  
针对视觉系统在动作识别过程中如何利用形状与运动信息的问题,提出了一种融合形状特征和运动特征的人体动作识别方法.该方法模拟视觉皮层的背侧和腹侧通路,建立了基于双通道理论的人体动作特征计算模型.计算模型分别利用2D Gabor滤波器和3D时空滤波器模拟腹侧和背侧通路中视觉皮层简单细胞,提取动作的时空信息,通过采样、局部遍历、模板学习一系列操作分别提取动作的时空特征,并采用线性融合方法获取描述动作的特征向量,构建了采用支持向量机(SVM)进行动作分类的动作识别系统.实验结果表明:该方法的识别性能优于同类型的识别方法,取得了较好的识别效果.  相似文献   

9.
在简要介绍数学公式识别发展状况的基础上,提出了一个基于递归策略的数学公式识别模型.该模型由版面分析和数学公式结构表达两部分组成.版面分析主要是提取文档中的数学公式;数学公式结构的表达采用一种递归算法将公式用结构树表示,它是公式识别的关键环节,该方法对公式结构具有较好的适应性.  相似文献   

10.
为了有效判别真实摔倒动作与疑似摔倒动作、提高动作识别准确度,提出基于希尔伯特黄变换(Hilbert-Huang transform, HHT)和改进概率神经网络(probabilistic neural networks, PNN)的信道状态信息(channel state information, CSI)人体动作识别算法。对CSI的幅度与相位融合信号进行数据预处理,利用HHT来提取区分人体动作信息的瞬时幅值和瞬时频率作为分类特征构建特征矩阵,在遗传算法(genetic algorithm, GA)优化的PNN神经网络中训练出能有效检测真实摔倒和疑似摔倒动作的GA-PNN人体动作识别模型;利用训练好的识别模型对输入的CSI数据进行摔倒动作的判别。仿真实验表明,提出的算法能有效地检测真实摔倒和疑似摔倒动作,其识别准确度可达到97.18%,且误报率较低。  相似文献   

11.
针对大规模动作识别时间长、识别精度低等问题,本文提出基于Spark框架的特征提取并行解决方法,利用Spark的内存计算能力,将视频数据分割成视频或帧,并将其放置到弹性分布式数据集(Resilient Distributed Data-sets Sets,RDDS)中进行后续处理,针对主流的深度学习特征提取方法:轨迹池深...  相似文献   

12.
为了提高执法效率和降低人力成本,研究一种基于视频的实时高效监控方案。该方案首先利用混合高斯模型和3σ原则的背景差分法,从视频中自动检测和定位车辆,对其行为轨迹进行标记,然后利用能量等信息获得车辆的牌照信息。实验表明,该系统能够对进入监控区域车辆的轨迹进行准确标定。该方案有助于提高交通视频监控系统的安全性、实时性及可靠性。  相似文献   

13.
随着微机电系统(MEMS)研究的精细化,人体传感器网络(简称体感网)技术在医疗监护领域有了长足发展,而人体动作分析与识别是体感网中富有挑战性的研究课题.采用动态隐马尔可夫模型(HMMs)方法对基于用体感网技术的人体动作序列进行了分割,并且对分割精准度进行了度量分析.从实验结果可以看到,动态HMMs方法优于LIR和Top-Down方法,其分割精准度达到了80%以上.对分割后的数据提取均值、方差等特征,采用支持向量机(SVM)方法分类识别的结果表明所提分割方法具有良好的稳健性,平均识别准确率在89%左右,与手动分割接近.  相似文献   

14.
随着低成本深度传感器的发明,尤其是微软Kinect的出现,高分辨率的深度与视觉(RGB)感知数据被广泛使用,并为解决计算机视觉领域中的基本问题开拓了新的机遇。本文针对基于深度信息的人体动作识别研究,首先提出了一种基于特征和数据类型的分类框架,并对最近几年提出的相关方法进行了全面回顾。随后,对文献中描述的算法进行了性能对比分析,同时对所引用的公共测试数据集进行了总结。最后,笔者对未来的研究方向进行了讨论并给出了相关建议。  相似文献   

15.
分析上臂动作与上臂肌肉的关系,通过表面肌电信号正确识别上臂的动作,是实现上肢功能修复的关键.设计了上肢曲臂、伸臂、水平外摆、水平内收、手臂垂直外旋和手臂垂直内旋6个动作,分别同时记录三角肌、肱二头肌和肱三头肌的表面肌电信号,采用时域和频域的方法提取特征值,通过人工神经网络进行识别,识别率达到90%以上.结果表明,通过上肢肱二头肌、肱三头肌和三角肌的表面肌电信号识别上臂的运动是可行的,为应用生物电信号控制机械假肢和实现脊髓损伤功能障碍修复奠定理论基础.  相似文献   

16.
早期动作识别的研究主要关注在简单背景及可控环境下单个人体动作的分类从而忽略了人的身份信息。本文主提出如何同时识别动作和身份。提出时空兴趣点不仅仅刻画了动作的时空属性,在采取不同的描述算子的情况下,它也能反映出关于动作执行人的身份信息。实验的结果验证了本文的想法。  相似文献   

17.
为了能够更为迅速与准确地对交警指挥等已知动作进行识别,提出了一种将人体特征点的运动轨迹三角函数化后用视觉词袋进行识别的方法.该方法通过将人体运动肢体的端点定义为特征点后,将特征点的空间位置与时间的关系看作是一组三角函数曲线,用不同的正弦公式的组合代替特征点的运动轨迹,以提取特征;同时此算法利用视觉词袋法,提取人体动作时的特征子通过金字塔模型与视觉词袋词典中的特征进行匹配,再通过抽象隐马尔科夫模型实现动作的预测,从而能够自适应地识别出动作.实验结果表明该算法在针对多个动作时优于传统算法.  相似文献   

18.
随着保险业的发展,保险欺诈也在全球范围内蔓延,尤其在汽车保险领域。因此,从极限学习机的理论出发,对基于极限学习机的汽车保险欺诈模型进行研究,引入广义线性模型,提出了一种广义线性模型—极限学习机(GLM-ELM)汽车保险欺诈识别模型。首先进行汽车保险欺诈数据的筛选与处理,然后将广义线性模型用于参数估计和拟合数据分布,从而满足模型对数据分布的要求,最后将拟合分布后的数据输入到GLM-ELM汽车保险欺诈识别模型中,进行实证分析并得出结论。结果表明:相对于传统的模型而言,基于GLM-ELM的汽车保险欺诈识别模型能够更好地识别索赔数据中的欺诈信息。  相似文献   

19.
为实现视频纹理的有效识别, 提出一种基于 LBP(Local Binary Patterns)和 KNN(k-Nearest Neighbor)的视频纹理识别算法。 该算法将视频纹理视为一个图像纹理集合, 通过多个图像纹理集合的方式表示。 由于可计算任意两幅纹理图像的相似度, 对于两个视频纹理, 可以计算两个图像纹理集合中所有元素之间的相似度, 将这些相似度中的最小值作为这两个视频纹理的相似度, 若要实现视频纹理的识别, 则可通过 KNN 算法实现分类与匹配。 通过在 DynTex 动态纹理数据库中的相关实验, 证明了该算法的有效性。  相似文献   

20.
考虑视频采样的变化和目标主体运动速度的不同,针对目前深度网络学习的视频序列特征单一、多种动作分类器分类置信程度不同的问题,提出了一种多时间尺度双流CNN与置信融合的视频动作识别方法.对视频序列采用两流神经网络在多个时间尺度上学习,提取不同时间跨度的视频帧之间的上下文信息特征,并采用LSTM进行多种特征的动作类别预测.然...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号