首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用Fenton氧化法处理川西某气井预处理后的采气废水,单因素考察了Fenton氧化法处理时pH值、H_2O_2/Fe~(2+)(摩尔比)、H_2O_2/COD(质量比)和反应时间对采气废水COD处理效果的影响,拟用超声(US)-Fenton法强化处理效果.研究结果表明,Fenton处理时的最佳水平组合为pH值为1,H_2O_2/Fe~(2+)(摩尔比)为3,H_2O_2/COD(质量比)为7,反应时间为120 min,此时废水COD的去除率达到64.21%,废水COD的去除过程符合一级动力学方程.US-Fenton法强化处理效果的对比实验表明,US与Fenton试剂对采气废水的催化降解存在协同效应.  相似文献   

2.
米诺环素制药废水难以被常规的生物法氧化降解,用超声波-Fenton组合高级氧化法对其进行处理,进行了单因素和正交实验.以COD值变化为测定指标,在超声波28 k Hz频率、15 min反应时间下,研究了H_2O_2的投加量、超声波功率、Fe~(2+)/H_2O_2物质的量的比和反应初始值pH对处理米诺环素废水效果的影响.结果表明,当H_2O_2的投加量为8 m L/L,超声波功率为300 W,Fe~(2+)∶H_2O_2物质的量的比为1∶20,反应初始pH值为3.0的条件下,COD的去除率达到最大,为86.15%.说明超声波-Fenton氧化法对于这种四环素类难降解抗生素制药废水的降解效果很好.  相似文献   

3.
研究了Fe~(2+)/Ce~(3+)/H_2O_2类Fenton反应体系去除邻苯二酚的性能.结果表明,在c(邻苯二酚)=10 mmol/L,pH=7及n(Fe~(2+))∶n(Ce~(3+))∶n(H_2O_2)=1∶2∶30的条件下,邻苯二酚的去除率可以达到85%以上,明显高于经典Fenton的去除率,且铈的加入改善了经典Fenton反应最适pH值在酸性范围内的缺点.通过对反应后生成沉淀物的FTIR和XPS表征,推测将Ce~(3+)引入经典Fenton体系后,其提高了HO_2·/O_2~-·的生成速率,进而促进了类Fenton反应中Fe~(3+)向Fe~(2+)的转化,进一步催化了羟基自由基的产生,从而有效提高了邻苯二酚的降解转化.此外,部分铁和铈在反应过程中形成的沉淀化合物也有助于邻苯二酚及其降解中间产物的吸附去除.  相似文献   

4.
以苯胺(C_6H_7N)废水为处理对象进行Fenton氧化降解试验,考察pH、H_2O_2投加量、n(H_2O_2)/n(Fe~(2+))比值以及苯胺初始浓度对Fenton降解苯胺的影响,并分析其降解途径.结果表明:苯胺初始浓度为50~200mg·L~(-1),pH=2~4,n(H_2O_2)/n(Fe~(2+))=10,n(H_2O_2)/n(C_6H_7N)=10~15,反应60min苯胺去除率达75.4%~87.4%;若苯胺浓度大于600mg·L~(-1),所需反应时间延长且降解率降低.检测发现苯胺降解需经过羟基化、取代、脱氢、开环产酸阶段,其中丁烯二酸为苯胺降解过程中产酸阶段重要的中间产物,且可生化性高,易降解.因此,认为在Fenton预处理苯胺过程中,可将苯胺降解到控制丁烯二酸阶段,以丁烯二酸作为后续生化处理目标污染物的处理方法有利于苯胺的完全矿化.  相似文献   

5.
UV/Fenton处理三唑磷农药废水   总被引:10,自引:0,他引:10  
对UV/Fenton氧化降解模拟三唑磷农药废水进行实验研究.通过测定废水COD_(cr)的变化,考察 [Fe~(2 )]/[H_2O_2],H_2O_2投加量、pH值和初始浓度等因素对三唑磷废水处理效果的影响.结果表明,[Fe~(2 )]/ [H_2O_2]=1:20,H_2O_2为理论投加量Q_(th),pH值为5~7时,光解效果较佳,反应速率常数在0.03 min~(-1)以上,COD_(cr)去除率达到90%.对光解过程的分析表明,三唑磷农药废水的UV/Fenton催化降解过程符合拟一级反应动力学模式.  相似文献   

6.
微电解-Fenton-MAP沉淀法处理垃圾渗滤液的试验研究   总被引:3,自引:0,他引:3  
采用了微电解-Fenton氧化-磷酸铵镁(MAP)沉淀联合处理垃圾渗滤液.试验结果表明:在HRT为80 min,pH为3.5时,微电解对垃圾渗滤液CODCr的去除率达到29.9%;微电解后的出水经Fenton进一步氧化,在pH为3,H2O2的投加量为13g/L,反应时间为25 min时,其CODCr的去除率可达81.3%;微电解-Fenton氧化后的出水再经MAP沉淀法处理,在pH为9,反应时间为25 min时,NH3-N的去除率达95%.微电解-Fenton氧化-MAP沉淀组合工艺处理垃圾渗滤液,其CODCr的总去除率达86.6%,NH3-N的总去除率达99.5%.  相似文献   

7.
Fe/C微电解-Fenton法预处理提高垃圾渗滤液可生化性的研究   总被引:1,自引:0,他引:1  
研究采用Fe/C微电解-Fenton法对老龄城市生活垃圾渗滤液进行预处理,提高其可生化性.通过调整初始pH,Fe-C投加量,铁碳质量比,H_2O_2投加量及反应时间考察其对垃圾渗滤液处理的效果,同时对Fe/C微电解,Fenton以及Fe/C微电解-Fenton的处理效果进行对比研究.实验结果表明,Fe/C微电解-Fenton法预处理表现出最好的处理性能,其最佳处理条件为:初始pH 3,Fe-C投加量52g/L,Fe/C 3,H_2O_2投加量12mL/L,接触反应1h后,COD去除率达到75%.此外,渗滤液的BOD5/COD也从0.075提高到0.250.  相似文献   

8.
制药废水是一种难生物降解的高浓度有机工业废水,处理困难.研究以某制药股份有限公司综合排放废水为对象,分别采用Fenton和UV-Fenton法对制药废水进行处理,分析试剂投加量、反应初始pH和反应时间等对反应的影响.结果表明,Fenton法处理制药废水的最佳条件为:FeSO4·7H2O投加0.036 mol/L,H2O2投加0.128 mol/L,初始pH为4.3,反应时间为2 h,CODCr去除率为43.9%. UV-Fenton法处理制药废水缩短反应时间,减少试剂投加量,最佳处理条件为:UV处理时间为7 min,FeSO4·7H2O投加0.029 mol/L,H2O2投加0.102 mol/L,初始pH为4.3,反应时间为75 min,最佳条件下CODCr去除率优于Fenton法,可达63.5%,且污水B/C增至0.39,提高可生化性.  相似文献   

9.
苯酚废水的光氧化降解研究   总被引:2,自引:1,他引:2  
研究了UV/Fenton、日光/Fenton、UV/TiO_2和UV/Fe~(2+)等几种光氧化体系对模拟苯酚废水的氧化降解。结果表明,在上述几种光氧化体系中,UV/Fenton体系对苯酚的氧化降解能力最强,可很快地使苯酚矿化,日光/Fenton体系的降解能力次之;而UV/TiO_2与UV/Fe~(2+)体系对苯酚的降解效果较差。反应初始pH值与催化剂Fe~(2+)用量等因素对苯酚的降解均有很大影响,光Fenton反应体系中,pH值在3~4范围内,苯酚的矿化效果较佳,pH值超过此范围,矿化率则急剧下降;苯酚的矿化率随着Fe~(2+)用量的增加而逐渐增大,但当Fe~(2+)达到一定量时,再增加Fe~(2+)用量,苯酚的矿化率反而有所下降。  相似文献   

10.
采用Fenton氧化法处理模拟苯酚废水,研究了氧化还原电位(ORP)与H_2O_2投加量、H_2O_2/Fe~(2+)投加摩尔比和pH等因素的变化,得出最佳控制条件:pH=3,n(H_2O_2)/n(Fe~(2+))=10,n(H_2O_2)=15mmol/L.实验发现,pH对Fenton体系中ORP整体变化趋势影响不大,当pH=3~6时,体系中ORP可达到500mV以上;H_2O_2投加量越高,所对应的ORP峰值出现越迟.通过对ORP变化规律的研究,为建立ORP控制Fenton氧化反应系统提供基础.  相似文献   

11.
吴家前  张健  李英花 《广西科学》2010,17(3):274-276
采集生活垃圾填埋场渗滤液样品,用10%石灰乳和10%NaOH溶液调节pH值至8.0,9.0,10.0,11.0,12.0,13.0后,用鼓风空气吹脱法进行氨氮脱除实验。结果表明,在常温、曝气量为10L/min、曝气强度为30m3/(m2.h)条件下,将渗滤液的pH值提高至10.0~11.0后再进行吹脱,有利于氨从渗滤液中逸出,吹脱后pH值下降为9.0。当pH值为11.0,气液比为2000~2500,吹脱时间为150min时,渗滤液中的氨氮去除率大于90%。渗滤液中氨氮的去除与CODcr的去除无直接关系。  相似文献   

12.
实验采用超声-Fenton法处理甲硝唑废水.通过测定COD值的变化得到处理的效果,通过静态实验研究Fe~(2+)投加量、H_2O_2投加量、pH值和超声反应时间对COD去除率的影响.正交实验结果表明,各因素影响显著性的先后顺序为H_2O_2投加量Fe~(2+)投加量pH值超声反应时间.研究结果表明,对于COD为1 010.5 mg/L的甲硝唑制药废水,在Fe~(2+)的投加量为0.06 mol/L,H_2O_2投加量0.25 mol/L,pH值为3,超声时间为60 min的条件下,COD去除率可达到95%,处理后COD质量浓度为50.5 mg/L,达到国家一级排放标准.说明超声-Fenton法对甲硝唑制药废水有良好的处理效果.  相似文献   

13.
在不同pH和温度下,采用UV/Fenton法和石灰混凝法联合处理五倍子生产单宁酸产生的高浓度有机废水.结果表明:常温下(20℃)在UV/Fenton试剂反应阶段,Fe2+和H2O2的摩尔比为1∶6,反应30min后,COD的去除率可以达到65.14%;经UV/Fenton试剂处理后的出水继续使用石灰混凝法处理,在pH=...  相似文献   

14.
Fenton试剂和UV-Fenton试剂深度处理垃圾渗滤液   总被引:8,自引:0,他引:8  
研究了Fenton试剂和紫外光(UV)_Fenton试剂联合深度处理垃圾渗滤液的最佳工艺条件,并对它们的处理效果进行比较,结果表明,最佳工艺条件是:H2O2量相当于COD耗氧值的1.5倍(即H2O2为0.96g/L)、pH值为3、FeSO4·7H2O的浓度为3.6×10-4mol/L(即100mg/L)、反应时间120min。在最佳工艺条件下,UV_Fenton试剂联合处理渗滤液COD去除率达71.5%,比Fenton试剂单独处理时COD去除率提高了13%。  相似文献   

15.
煤制气废水组分复杂,污染物浓度高,含有喹啉、异喹啉、甲基喹啉、吲哚、吡啶、联苯、咪唑、咔唑、烷基吡啶等多种生物难降解的有机物,经生化处理后,仍有较深的色度,CODcr也难以达标。为了解决上述问题,笔者对生化出水进行铁炭微电解-Fenton法深度处理,达到了很好的脱色降CODcr的效果。笔者通过正交试验考察了进水pH值、铁炭体积比、H2O2投加量、水力停留时间、反应器连续运行时间等因素对出水水质及其处理效果的影响,试验结果表明:当进水pH值为2-3、铁炭体积比为2:1、H2O2投加量为4.0ml/l、水力停留时间为90min时,CODcr去除率达80%以上,色度去除率达99%以上.  相似文献   

16.
采用超声波-Fenton高级氧化工艺联合降解百草枯模拟农药废水,研究了超声-Fenton耦合处理过程中各因素对百草枯溶液COD去除率的影响.结果表明:将百草枯原溶液稀释150倍时,在超声波频率为19 kHz,功率为200 W,超声时间为150 min,H_2O_2加入量为40 mmol,[H_2O_2]与[Fe~(2+)]的物质的量比比例为5时,百草枯废水COD去除效率可达95.1%.  相似文献   

17.
超声氧化联合处理油墨废水试验研究   总被引:1,自引:0,他引:1  
采用超声与Fenton试剂氧化组合技术处理油墨废水,考察pH值、Fe~2+与H_2O_2浓度比、H_2O_2浓度、超声频率以及功率对处理效果的影响.研究结果表明,对于进水COD_(Cr),浓度为810 mg/L,色度为160的油墨废水,在最佳操作条件下,反应240 min后,US-Fenton法COD_(Cr),去除率达81.4%,色度去除率达到100%,与单独Fenton试剂氧化法相比,分别提高16.0%和5.5%左右.US-Fenton试剂耦合的方法对油墨废水的降解效果优于两者的简单叠加,但随着反应时间的延长,协同效应逐渐减小.  相似文献   

18.
光助Fenton技术作为一种高级氧化技术,广泛地应用于废水处理的研究中,草酸盐的加入可以改善对光的利用率,提高对废水中有机物的降解能力,降低成本.采用125W荧光高压汞灯模拟太阳光,研究了造纸中段废水在草酸钠-Fenton反应体系作用下的降解规律.讨论了H2O2 、C2O2-4、Fe2+ 的初始浓度以及pH值对中段水CODcr去除率的影响.结果表明,在初始pH值为5、过氧化氢浓度为4.1 mmol/L、草酸钠浓度为4.0 mmol/L、亚铁离子浓度为0.20 mmol/L时, 中段废水的CODcr值在60 min内的去除率可达91.5%.  相似文献   

19.
研究UV/Fenton试剂中各个因素对降解高浓度含酚废水的影响,确定UV/Fenton法处理高浓度含酚废水的最佳工艺条件.保持UV/Fenton体系的基准条件不变,通过改变pH值、H2O2浓度、Fe2+浓度、反应时间等实验条件,考察这些因素对UV/Fenton法处理高浓度含酚废水效果的影响.结果表明,UV/Fenton试剂对高浓度舍酚废水有较好的去除效果和较高的反应速率.当苯酚初始浓度为1 000 mg/L时,紫外光波长为253.7 nm,反应时间为25~40 min,pH值为6~7,H2O2浓度为40~50 mmol/L,Fe2+浓度为28~30 mg/L时,苯酚去除率可迭90%以上,满足后续生物降解要求.  相似文献   

20.
以珠江官洲河段的水样为研究对象,采用Fenton法和UV-Fenton法对水样中有机微污染的降解效果进行研究.结果表明,在室温条件下,Fenton法和UV-Fenton法对微污染水样均具有较好的降解能力,60min内TOC降解效率分别超过40%和80%,确定了Fenton试剂H2O2和FeSO4的最佳投加量分别为90mmol/L和0.4mmol/L,而UV-Fenton最佳照射时间为30min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号