首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Fine structures of supersonic flow over a 5 mm high backward facing step(BFS),including expansion wave fan,reattachment shock,supersonic boundary layer were measured in a Ma=3.0 low-noise indraft wind tunnel.By varying the superficial roughness of the wall upstream from the step,supersonic laminar flow and supersonic turbulent flow could be formed over a BFS.Measurements on the spatiotemporal features of the holistic flow field and the fine structures in four typical regions were carried out using NPLS(nano-based planar laser scattering).Flow structures,including expansion wave fan,reattachment shock,supersonic boundary layer and its separation,reattachment and redevelopment are revealed by measuring the holistic structure of the transient flow field.Comparing the two time-averaged flow fields with each other,it is apparent that supersonic turbulent flow over a BFS(STF-BFS) has a larger expansion angle and a shorter recirculation region,and its redeveloped boundary layer increases at a smaller obliquity while the angle of reattachment shock is the same for the supersonic laminar flow over a BFS(SLF-BFS).With regard to time-evolution features,the K-H vortices in the SLF-BFS suffers from shearing,expansion,reattachment and three-dimensional effects while in the STF-BFS large-scale structures are affected by the incline and distortion at the reattachment point due to expansion,viscosity and reverse-pressure.Studies on local regions indicate that in the SLF-BFS,the emergence of compression waves which distinctly converge into a reattachment shock is due to the local convective Mach number and the inducement of K-H vortices in the free shear layer.Nevertheless,in the STF-BFS,compression waves and K-H vortices are barely evident,and the formation of a reattachment shock is related to the wall compressive effect.  相似文献   

2.
The present paper investigates dispersed-phase flow structures of a dust cloud induced by a normal shock wave moving at a constant speed over a flat surface deposited with fine particles. In the shock-fitted coordinates, the general equations of dusty-gas boundary layer flows are formulated within the framework of a multi-fluid model and parametric numerical studies of the carrier- and dispersed-phase flow fields are performed. The problem associated with crossing particle trajectories and the formation of local particle accumulation regions are solved by using the full Lagrangian method for the dispersed phase. The basic features of the near-wall two-phase flow under consideration including the role of Saffman force in the particle entrainment and the development of discontinuities or singularities in the particle density profiles are discussed. The effects associated with account of the non-uniformity of particle size and the finiteness of the particle Knudsen numbers are studied in detail.  相似文献   

3.
The experimental investigation of supersonic flow over a hemisphere was conducted using Nanoparticle-based Planar Laser Scattering(NPLS) technique in a supersonic quiet wind tunnel at Ma=2.68.Ahead of the hemisphere,boundary layer separation with the formation of a three-dimensional separated flow was observed,which was resulted from the interaction between the three-dimensional bow shock wave and the boundary layer.The complex flow structures of supersonic flow over the hemisphere were visualized.Based on the time correlation of NPLS images,time-space evolutionary characteristics of supersonic flow over the hemisphere were studied,and the evolutionary characteristics of the spanwise and streamwise large scale vortex structures were obtained,which have the features of periodicity and similar geometry.  相似文献   

4.
The Beijing City Air Pollution Observation Field Experiment (BECAPEX) is described with emphases on the “point-surface” research approach and composite analysis. The analysis results of measurements from four observation sites across the Beijing urban area from January to March indicate that the overall impact of urban emission sources in the heating season is significant, and the staggered impact of urban emission sources has different features at observation sites over different parts of Beijing in both heating and non-heating seasons. The pollutants NOx, SO2 and CO in the urban boundary layer have the in-phase variation features over a large area. 03 concentrations at different sites have the same variation trend but its change is reversed phases with above pollutants. The pollutants over the urban area in heating and non-heating seasons also have the synchronous variation trend. The comprehensive sounding of BECAPEX indicates that pollutants and aerosol verticalprofiles are closely correlated to the vertical structure of the large-scale inversion layer in the urban boundary layer over the urban area. The localized 3D-structural features of local urban polluting processes associated with the peripheral areas are discussed with a “point-surface” comprehensive sounding technique.  相似文献   

5.
Using in situ observations from THEMIS A, D and E during the 2008-2011 tail season, we present a statistical study of the evolution of pressure gradients in the near-Earth tail during bursty bulk flow (BBF) convection. We identified 138 substorm BBFs and 2,197 non-substorm BBFs for this study. We found that both the pressure and the Bz component of the magnetic field were enhanced at the arrival of BBFs at the spacecraft locations. We suggest that the increase of Bz during non-substorm BBFs is associated with flux pile-up. However, the much stronger enhancement of Bz during substorm BBFs implies the occurrence of magnetic field dipolarization which is caused by both the flux pile-up process and near-Earth current disruption. Furthermore, a bow-wave-like high pressure appears to be formed at the arrival of substorm BBFs, which is responsible for the formation of region-1-sense FACs. The azimuthal pressure gradient associated with the arrival of substorm BBFs lasts for about 5 min. The enhanced pressure gradient associated with the bow wave is caused by the braking and diversion of the Earthward flow in the inner plasma sheet. The results from this statistical study suggest that the braking and azimuthal diversion of BBFs may commonly create azimuthal pressure gradients, which are related to the forrnation of the FAC of the substorm current wedge.  相似文献   

6.
Mesoscale eddy effects on the wintertime vertical mixing in the formation region of the North Pacific Subtropical Mode Water (NPSTMW) are studied using hydrographic data from Argo profiling floats deployed in the Kuroshio recirculation region in February and March of 2001. Anticyclonic (warm) eddy enhances the wintertime vertical mixing and results in the deep mixed layer and the deep thermocline. Consequently, a large volumetric water mass with low potential vorticity corresponding to the prototype of NPSTMW tends to be formed. By contrast, cyclonic (cold) eddy is unfavorable for the vertical mixing process and halts the deepening of the mixed layer and thus the formation of mode water. Further analysis shows that cyclonic eddies prevail in the late 1990s in the formation region of NPSTMW, which lead to significant suppression of the wintertime vertical mixing (96-98) and thus are unfavorable for the formation of NPSTMW; while the situation is completely reversed in the early 1990s (93-95).  相似文献   

7.
The contact melting processes of phase change material (PCM) under a sliding plate, which is driven by the friction and temperature difference ΔT, are studied. By using film theory, the fundamental equations for the melting process are derived. The thickness of boundary layer, the pressure distribution inside boundary layer and the mass melting rate of PCM are also obtained with the numerical method. It is found that (1) the larger the temperature difference is, the larger the thickness of boundary layer and the mass melting rate are, and the more asymmetric the pressure distribution is; (2) the quicker the sliding velocity is, the larger the mass melting rate is, the flatter the thickness of boundary layer is, and the more symmetric the pressure distribution is; (3) the results of the contact melting driven together by the friction and temperature difference cannot be obtained by the addition of those driven respectively by the friction and temperature difference.  相似文献   

8.
The contact melting processes of phase change material (PCM) under a sliding plate, which is driven by the friction and temperature difference AT, are studied. By using film theory, the fundamental equations for the melting process are derived. The thickness of boundary layer, the pressure distribution inside boundary layer and the mass melting rate of PCM are also obtained with the numerical method. It is found that (1) the larger the temperature difference is, the larger the thickness of boundary layer and the mass melting rate are, and the more asymmetric the pressure distribution is; (2) the quicker the sliding velocity is, the larger the mass melting rate is, the flatter the thickness of boundary layer is, and the more symmetric the pressure distribution is; (3) the results of the contact melting driven together by the friction and temperature difference cannot be obtained by the addition of those driven respectively by the friction and temperature difference.  相似文献   

9.
Difference schemes on non-uniform mesh and their application   总被引:1,自引:0,他引:1  
High order accurate schemes are needed to simulate the multi-scale complex flow fields to get fine structures in simulation of the complex flows with large gradient of fluid parameters near the wall, and schemes on non-uniform mesh are desirable for many CFD (computational fluid dynamics) workers. The construction methods of difference approximations and several difference approximations on non-uniform mesh are presented. The accuracy of the methods and the influence of stretch ratio of the neighbor mesh increment on accuracy are discussed. Some comments on these methods are given, and comparison of the accuracy of the results obtained by schemes based on both non-uniform mesh and coordinate transformation is made, and some numerical examples with non-uniform mesh are presented.  相似文献   

10.
With the large latent heat and low cost, the paraffin has been widely used in battery thermal management(BTM) system to improve the efficiency and cycling life of power battery. The numerical model of paraffin melting in a cavity has been established, and the effects on the solid–liquid phase change process have been investigated for the purpose of enhancing the heat transfer performance of paraffin-based BTM system. The results showed that the location of the heating wall had great effects on the melting process. The paraffin in the cavity melted most quickly when the heating wall located at the bottom. Furthermore, the effects of thermal conductivity and the velocity of the slip wall have been considered. The gradient of liquid fraction increased with the increase in thermal conductivity, and the melting process could be accelerated or delayed by the slip wall with different velocity.  相似文献   

11.
On the basis of test, nonlinear finite element analysis of reinforced concrete (R. C) short-limb shear walls under monotonic horizontal load are carried out by ANSYS program in order to understand the evolution of cracking, deformation and failure course of the specimens. At the same time, the results of numerical calculation are compared with the results of test. The results indicate that, under monotonic horizontal load the failures of the specimens with flange wall and without flange wall all occur at the intersections of lintel bottom and limb of wall, the failures also occur at the bottom of limb; the load-displacement curve of wall without flange is steeper than that of wall with flange, and the ductility is worse than that of wall with flange; the results, such as cracking, deformation, yield load and ,so on of finite element analysis agree well with the results of test. These results provide theoretical basis of study and application of R. C shortlimb shear wall.  相似文献   

12.
The process of AT-driven contact melting of the solid phase change material (PCM) around a horizontal elliptical cylinder heat source is analyzed. Aiming at the problem existed in the published literature, namely the thickness of boundary layer tends to be infinite at φ = 90°, and considering the difference of normal angle between the horizontal elliptical cylinder surface and the solid-liquid interface of PCM, a new mathematic model is proposed, and the fundamental equations for the melting process are derived with the film theory. The new pressure distribution inside the boundary layer, the variation law of normal angle of the solid-liquid interface, the thickness of the boundary layer and the relationship between the melting velocity and resultant force are obtained. The solutions of the fundamental equations under different elliptical compression coefficients are analyzed and discussed. It is found that the thickness of the boundary layer obtained by the new model is a finite value and accords with the experimental result at φ = 90°.  相似文献   

13.
The process of △T-driven contact melting of the solid phase change material (PCM) around an horizontal elliptical cylinder heat source is analyzed. Aiming at the problem existed in the published literature, namely the thickness of boundary layer tends to be infinite at = 90o, and considering the difference of normal angle between the horizontal elliptical cylinder surface and the solid-liquid interface of PCM, a new mathematic model is proposed, and the fundamental equations for the melting process are derived with the film theory. The new pressure distribution inside the boundary layer, the variation law of normal angle of the solid-liquid interface, the thickness of the boundary layer and the relationship between the melting velocity and resultant force are obtained. The solutions of the fundamental equations under different elliptical compression coefficients are analyzed and discussed. It is found that the thickness of the boundary layer obtained by the new model is a finite value and accords with the experimental result at = 90o.  相似文献   

14.
Wang  XiQuan  Wang  ZiFa  Guo  Hu 《科学通报(英文版)》2009,54(3):468-473
By using conventional micro-meteorological observation data of Beijing Yuetan Park Tower (180 m), the temperature profile of urban boundary layer (UBL), its characteristics and seasonal variation are analyzed. The main results are as follows: (1) In winter, the interdiurnal surface air temperature varia- tion at the surface is not synchronized with that of the upper levels, other than in summer and other seasons, which illuminates the impacts of Beijing’s geographical location, sky view factor and stably st...  相似文献   

15.
This paper describes a time-domain boundary element method developed to analyze the interactions of acoustic and elastic waves near the interfaces between water and an anisotropic elastic solid. Two models are analyzed with one being the interface between two half spaces of fluid and solid and the other being a fluid region sandwiched by half space domains of anisotropic elastic solids. Both monopole and dipole point sources are used to generate an initial pressure wave in the fluid. Some snapshots of the transient wave behavior near the fluid-solid interfaces are given. The effect of the anisotropy in the solid on the pressure waveforms in the fluid is discussed. The numerical results allow detailed arrival identification and interpretation of acoustic and elastic waves propagating along the fluid-solid interfaces.  相似文献   

16.
A boundary collocation method based on the least-square technique and a corresponding adaptive computation process have been developed for the plate bending problem. The trial functions are constructed using a series of the biharmonic polynomials, and the local error indicators are given by the residu- als of the energy density on the boundary. In comparison with the conventional collocation methods, the solution accuracy in the present method can be improved in an economical and efficient way. In order to dem- onstrate the efficiency and advantages of the adaptive boundary collocation method proposed in this paper, two numerical examples are presented for circular plates subjected to uniform loads and restrained by mixed boundary conditions. The numerical results for the examples show good agreement with ones presented in the literature.  相似文献   

17.
Based on the principle of Lorentz force induced acoustic vibration, radiation theory comparison between acoustic point and dipole sources was conducted for magnetoacoustic tomography with magnetic induction (MAT-MI). It is proved that each acoustic source of MAT- MI is produced by the divergence of the magnetically induced Lorentz force, and the detected acoustic pressure is the integral of all diffraction sources inside the object. Wave clusters are produced by abrupt pressure changes at conductivity boundaries, and only the configurations in terms of shape and size of phantom models can be recon- structed. However, different from point source, positive and negative pressures are generated by the radiation pat- tern of dipole sources. Reverse vibration phases of wave clusters in collected waveforms and opposite polarities of borderline stripes in reconstructed images are produced at conductivity boundaries, representing the direction of conductivity changes. The experimentally collected wave- forms and reconstructed images of the aluminum foil cylinder and cylindrical saline gel phantom model agree well with simulated results. The favorable results prove the validity of the radiation theory of acoustic dipole source and provide basis for further investigation of conductivity reconstruction for MAT-MI.  相似文献   

18.
19.
A considerable challenge in plant ecology is to understand how interactions,such as competition or facilitation,shape the spatial distribution of plants.The‘‘stress gradient hypothesis’’predicts that facilitation and competition will vary inversely across gradients of abiotic stress or consumer pressure.Surprisingly,few previous studies have explored how the balance between facilitation and competition affects spatial patterns along gradients of stress in a plant population based on field experiments.In order to investigate the effects of consumer pressure,facilitation,and competition on the spatial pattern of plant populations,we conducted a restoration succession series field experiment in the Inner Mongolian steppe in which sample sites of graded consumer pressure,specifically grazing stress,were established.We chose to examine the spatial patterns of Leymus chinensis,a dominant species in our experimental site.In order to test the‘‘stress gradient hypothesis,’’we applied the univariate O-ring statistic to analyze local neighborhood density at different spatial scales.We used the pair-correlation function to detect the characteristics of point patterns using complete spatial randomness,the Poisson cluster process,and the nested double-cluster process.We found that the local densities of L.chinensis were higher under high stress than lower stress environments.This demonstrated the‘‘stress gradient hypothesis’’in that facilitation and competition varied inversely across gradients of consumer pressure.However,we found nodifferences in the spatial patterns of L.chinensis based on complete spatial randomness when interactions shifted from facilitation to competition along gradients of consumer pressure.Furthermore,we detected the characteristics of point patterns using the Poisson cluster and nested doublecluster processes.The results showed the spatial patterns of L.chinensis to fit well with the nested double-cluster model under highly stressful conditions,while in lower stress environments they were best approximated by the Thomas process.Our results illustrate that a shift in interactions from facilitation to competition along gradients of consumer pressure can shape spatial patterns and that a combination of the Poisson cluster process and nested doublecluster process can detect spatial pattern characteristics which cannot be detected by complete spatial randomness.  相似文献   

20.
By using an ensemble-averaged two-fluid model,with valid closure conditions of interfacial momentum exchange due to virtual mass force,viscous shear stress and drag force,a model for pressure wave propagation in a horizontal gas-liquid bubbly flow is proposed.According to the small perturbation theory and solvable condition of one-order linear uniform equations,a dispersion equation of pressure wave is induced.The pressure wave speed calculated from the model is compared and in good agreement with existing data.According to the dispersion equation,the propagation and attenuation of pressure wave are investigated systemically.The factors affecting pressure wave,such as void fraction,pressure,wall shear stress,perturbation frequency,virtual mass force and drag force,are analyzed.The result shows that the decrease in system pressure,the increase in void fraction and the existence of wall shear stress,will cause a decrease in pressure wave speed and an increase in the attenuation coefficient in the horizontal gas-liquid bubbly flow.The effects of perturbation frequency,virtual mass and drag force on pressure wave in the horizontal gas-liquid bubbly flow at low perturbation frequency are different from that at high perturbation frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号