首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The pineal has been identified as a major circadian pacemaker within the circadian system of a number of lower vertebrates although other pacemaking sites have been implicated as well. The rhythmic synthesis and secretion of the pineal hormone, melatonin, is suggested as the mechanism by which the pineal controls circadian oscillators located elsewhere. Both light and temperature cycles can entrain the pineal melatonin rhythm. The pineal, therefore, acts as a photo and thermoendocrine transducer which functions to synchronize internal cycle with cycles in the environment. A model is presented which portrays the pineal as a major component of a multioscillator circadian system and which suggests how these multiple circadian clocks are coupled to each other and to cycles of light and temperature in the external world.  相似文献   

2.
Summary The pineal has been identified as a major circadian pacemaker within the circadian system of a number of lower vertebrates although other pacemaking sites have been implicated as well. The rhythmic synthesis and secretion of the pineal hormone, melatonin, is suggested as the mechanism by which the pineal controls circadian oscillators located elsewhere. Both light and temperature cycles can entrain the pineal melatonin rhythm. The pineal, therefore, acts as a photo and thermoendocrine transducer which functions to synchronize internal cycle with cycles in the environment. A model is presented which portrays the pineal as a major component of a multioscillator circadian system and which suggests how these multiple circadian clocks are coupled to each other and to cycles of light and temperature in the external world.  相似文献   

3.
Some reflections on the phylogeny and function of the pineal   总被引:2,自引:0,他引:2  
M H Hastings  G Vance  E Maywood 《Experientia》1989,45(10):903-909
The pineal gland is a universal feature of vertebrate organization and has been implicated in the control of rhythmic adaptations to daily and seasonal cycles. This paper considers three aspects of pineal function; the generation of a rhythmical endocrine signal (the nocturnal synthesis of melatonin) and the use of the signal in the regulation of circadian and photoperiodic functions. The shape of the nocturnal signal is determined by an interaction of afferent neural control and biochemical processes intrinsic to the pinealocyte. The nature of the effect of the signal upon circadian systems is unclear, and in adult mammals may not be a specific, direct influence upon the entrainment pathways of the oscillator. In the foetus, strong evidence exists for a physiological role of the maternal melatonin signal as a true internal zeitgeber, remnants of which may persist in the adult. Photoperiodic time measurement in adult and foetal mammals is critically dependent upon the melatonin signal. Indirect evidence indicates that several neural systems may be involved in the response to melatonin and consistent with this, a variety of central melatonin binding sites have been identified in the brain and pituitary. The intra-cellular actions of melatonin and the properties of melatonin responsive neural systems have yet to be identified, but in the context of photoperiodic time measurement, it is clear that the neural responses to melatonin are not dependent upon the circadian clock. The two central effects of melatonin; photoperiodic time measurement and circadian entrainment are probably mediated through completely separate mechanisms.  相似文献   

4.
While the production of melatonin in higher vertebrates occurs in other organs and tissues besides the pineal, the contribution of extrapineal sites of melatonin synthesis such as the retina, the Harderian glands and the gut to circulating melatonin levels is still a matter of debate. The amount of melatonin found in the gastrointestinal tract is much higher than in any other organ including the pineal and the gut appears to make a significant contribution to circulating melatonin at least under certain conditions. The gut has been identified to be the major source of the elevated plasma concentrations of melatonin seen after tryptophan administration and of the changes of circulating melatonin level induced by the feeding regime. Whereas the circadian and circannual fluctuations of the concentration of melatonin in the blood seem to be triggered by changes of the photoenvironment and its effect of pineal melatonin formation, basal daytime melatonin levels and the extent of their elevation at nighttime appear to be additionally controlled by nutritional factors, such as the amount and the composition of ingested food and therefore availability of tryptophan as a rate-limiting precursor of melatonin formation by the enterochromaffin cells of the gastrointestinal tract.  相似文献   

5.
Summary The pineal gland is a universal feature of vertebrate organization and has been implicated in the control of rhythmic adaptations to daily and seasonal cycles. This paper considers three aspects of pineal function; the generation of a rhythmical endocrine signal (the nocturnal synthesis of melatonin) and the use of the signal in the regulation of circadian and photoperiodic functions. The shape of the nocturnal signal is determined by an interaction of afferent neural control and biochemical processes intrinsic to the pinealocyte. The nature of the effect of the signal upon circadian systems is unclear, and in adult mammals may not be a specific, direct influence upon the entrainment pathways of the oscillator. In the foetus, strong evidence exists for a physiological role of the maternal melatonin signal as a true internal zeitgeber, remnants of which may persist in the adult. Photoperiodic time measurement in adult and foetal mammals is critically dependent upon the melatonin signal. Indirect evidence indicates that several neural systems may be involved in the response to melatonin and consistent with this, a variety of central melatonin binding sites have been identified in the brain and pituitary. The intra-cellular actions of melatonin and the properties of melatonin responsive neural systems have yet to be identified, but in the context of photoperiodic time measurement, it is clear that the neural responses to melatonin are not dependent upon the circadian clock. The two central effects of melatonin; photoperiodic time measurement and circadian entrainment are probably mediated through completely separate mechanisms.The Editors wish to thank Dr M. Hastings for coordinating this multi-author review.  相似文献   

6.
Melatonin from the retina and the pineal gland functions in neuroendocrine hierarchies. Photoreceptors — eyes and extraretinal — detect light. Oscillators — pineal and suprachiasmatic nuclei — act as pacemakers. Driven neuroendocrine rhythms carry temporal hormone signals throughout the body. Light controls melatonin: light sets the phase of the melatonin rhythm and determines the duration of melatonin synthesis. By these means, circadian rhythms (e.g. in locomotor activity and body temperature) and seasonal rhythms (e.g. in reproduction) are controlled.  相似文献   

7.
A melatonin rhythm was observed in the pineals of 18-day-old chick embryos incubated under a light-dark regime of 18: 6 h. A low pineal melatonin content was found during the light phase of the day. Concentrations started to increase 2 h after dark onset and reached maximum levels after 4 h of darkness. The amplitude of the pineal melatonin rhythm increased considerably after 2 days and night-time concentrations in 20-day-old embryos were more than 5 times higher than in 18-day-old ones. Significant day/night differences in melatonin production were found both in pineals and eyes. Exposure of eggs to 1 h of light during the dark period decreased the high melatonin concentrations in the eyes but not in the pineals of the 20-day-old chick embryo. The results suggest that in this precocial bird at least part of the circadian system may already operate during embryonic life.  相似文献   

8.
Over the last ten years there has been growing acceptance that retinal photoreception among mammals extends beyond rods and cones to include a small number of intrinsically photosensitive retinal ganglion cells (ipRGCs). These ipRGCs are capable of responding to light in the absence of rod/cone input thanks to expression of an opsin photopigment called melanopsin. They are specialised for measuring ambient levels of light (irradiance) for a wide variety of so-called non-image-forming light responses. These include synchronisation of circadian clocks to light:dark cycles and the regulation of pupil size, sleep propensity and pineal melatonin production. Here, we provide a review of some of the landmark discoveries in this fast developing field, paying particular emphasis to recent findings and key areas for future investigation.  相似文献   

9.
Evidence is clear that each melatonin-producing cell in the chick pineal gland contains a circadian oscillator that continues to function in vitro, resulting in a prominent day/night rhythm of melatonin secretion. The aim of the present investigation was to examine whether the circadian organization of the gland has an electrophysiological correlate. To this end, single-cell recordings were made from isolated chick pineal glands kept in vitro under a light/dark cycle of 12:12 h, identical to that of the donors, or under continuous light or darkness. In all the glands investigated, a very small percentage of cells exhibited sodium-dependent spontaneous spike activity with a mean frequency below 10 Hz. The cells revealed rhythms with periods in the 15- to 60-min range and, additionally, exhibited ultradian and circadian rhythms in firing, with periods of 10.75+/-1.06 h and 26.25+/-1.26 h (mean +/- standard deviation), respectively. Most of the cells exhibited circadian rhythms with higher activity during daytime than at night, showing that the electrical activity and melatonin rhythm were out of phase. Under constant light or darkness, the circadian rhythm persisted. When the light/dark cycle of the donors was phase-advanced by 5 h, the cells revealed complete entrainment. We discuss whether the cells, albeit small in number, could function as a secondary ultradian/circadian oscillator contributing to the ultradian/circadian organization of the gland.  相似文献   

10.
Periodic circadian (24-h) cycles play an important role in daily hormonal and behavioural rhythms. Usually our sleep/wake cycle, temperature and melatonin rhythms are internally synchronized with a stable phase relationship. When there is a desynchrony between the sleep/wake cycle and circadian rhythm, sleep disorders such as advanced and delayed sleep phase syndrome can arise as well as transient chronobiologic disturbances, for example from jet lag and shift work. Appropriately timed bright light is effective in re-timing the circadian rhythm and sleep pattern to a more desired time, ameliorating these disturbances. Other less potent retiming effects may also be obtained from the judicious use of melatonin and exercise.  相似文献   

11.
The melatonin rhythm: both a clock and a calendar   总被引:24,自引:0,他引:24  
The paper briefly reviews the data which shows that the circadian production and secretion of melatonin by the pineal gland can impart both daily, i.e., clock, and seasonal, i.e., calendar, information to the organism. The paper summarizes the 3 patterns of nocturnal melatonin production that have been described. Clearly, regardless of the pattern of nocturnal melatonin production a particular species normally displays, the duration of nightime elevated melatonin is proportional to the duration of the night length. Since daylength under natural conditions changes daily the melatonin rhythm, which adjusts to the photoperiod sends time of year information to the organism. The melatonin receptors which subserve the clock message sent by the pineal gland in the form of a melatonin cycle may reside in the biological clock itself, namely, the suprachiasmatic nuclei (SCN). The melatonin receptors that mediate seasonal changes in reproductive physiology are presumably those that are located on the pars tuberalis cells of the anterior pituitary gland. Besides these receptors which likely mediate clock and calendar information, melatonin receptors have been described in other organs. Interestingly, the distribution of melatonin receptors is highly species-specific. Whereas the clock and calendar information that the melatonin cycle imparts to the organism relies on cell membrane receptors, a fact that is of some interest considering the high lipophilicity of melatonin, recent studies indicate that other functions of melatonin may require no receptor whatsoever.  相似文献   

12.
A melatonin rhythm was observed in the pineals of 18-day-old chick embryos incubated under a light-dark regime of 186 h. A low pineal melatonin content was found during the light phase of the day. Concentrations started to increase 2 h after dark onset and reached maximum levels after 4 h of darkness. The amplitude of the pineal melatonin rhythm increased considerably after 2 days and night-time concentrations in 20-day-old embryos were more than 5 times higher than in 18-day-old ones. Significant day/night differences in melatonin production were found both in pineals and eyes. Exposure of eggs to 1 h of light during the dark period decreased the high melatonin concentrations in the eyes but not in the pineals of the 20-day-old chick embryo. The results suggest that in this precocial bird at least part of the circadian system may already operate during embryonic life.  相似文献   

13.
We examined levels of melatonin in the pineal, eyes and plasma over a 24 h period during development in the altricial zebra finch. Beginning as early as 2 days after hatching there was a distinct 24 h rhythm in melatonin in the pineal and plasma. Beginning at day seven after hatching there was also a 24 h rhythm present in the eyes. In the pineal and eyes the amplitude of the 24 h rhythm increased with age. In contrast, the amplitude of the plasma melatonin rhythm at 2 days was already within the range of adults and did not increase with age. These results confirm and expand earlier findings in the European starling and parallel those from precocial birds indicating that the circadian system is already competent at or shortly after hatching even in atricial birds.  相似文献   

14.
Summary Although pinealectomy has little influence on the circadian locomotor rhythms of laboratory rats, administration of the pineal hormone melatonin has profound effects. Evidence for this comes from studies in which pharmacological doses of melatonin are administered under conditions of external desynchronization, internal desynchronization, steady state light-dark conditions, and phase shifts of the zeitgeber. Taken together with recent findings on melatonin receptor concentration in the rat hypothalamus, particularly at the level of the suprachiasmatic nuclei, these results suggest that melatonin is a potent synchronizer of rat circadian rhythms and has a direct action on the circadian pacemaker. It is possible, therefore, that the natural role of endogenous melatonin is to act as an internal zeitgeber for the total circadian structure of mammals at the level of cell, tissue, organ, whole organism and interaction of that organism with environmental photoperiod changes.  相似文献   

15.
Melatonin and circadian control in mammals   总被引:5,自引:0,他引:5  
S M Armstrong 《Experientia》1989,45(10):932-938
Although pinealectomy has little influence on the circadian locomotor rhythms of laboratory rats, administration of the pineal hormone melatonin has profound effects. Evidence for this comes from studies in which pharmacological doses of melatonin are administered under conditions of external desynchronization, internal desynchronization, steady state light-dark conditions, and phase shifts of the zeitgeber. Taken together with recent findings on melatonin receptor concentration in the rat hypothalamus, particularly at the level of the suprachiasmatic nuclei, these results suggest that melatonin is a potent synchronizer of rat circadian rhythms and has a direct action on the circadian pacemaker. It is possible, therefore, that the natural role of endogenous melatonin is to act as an internal zeitgeber for the total circadian structure of mammals at the level of cell, tissue, organ, whole organism and interaction of that organism with environmental photoperiod changes.  相似文献   

16.
Vertebrate circadian rhythms: Retinal and extraretinal photoreception   总被引:3,自引:0,他引:3  
Summary ERRs Both the pineal and the SCN are elements of the vertebrate multioscillator system although the relative importance of these 2 areas probably varies between, and possibly within, the different vertebrate classes. Extraretinal photoreception is a universal feature of submammalian vertebrates, and possibly of neonatal mammals, but is absent in adult mammals. Although the pineal systems of sumammalian vertebrates are photosensitive, the pineal system has been directly implicated as an extraocular site for the perception of entraining light cycles only in amphibians. In all other submammalian vertebrates extraretinal entrainment can occur in the absence of the pineal system although it is certainly conceivable that the pineal system may act as an alternate route of photoreception. These extraretinal-extrapineal receptors are located within the brain but the exact location(s) of these receptors within the brain is unknown. The hypothalamus would be likely area for this extraretinal photoreception, however, for several reasons: 1. Neurophysiological studies have identified light sensitive neurons in the frog's hypothalamus43. 2. The avian hypothalamus is a site of photoperiodic photoreception100–103. 3. The only other light sensitive structures known in vertebrates—the pineal system and the lateral eyes—are all derived embryologically from the hypothalamus. 4. The hypothalamus appears to be the site of a circadian clock and there may be advantages in having the photoreceptors and the clock anatomically close to one another. These considerations, of course, do not exclude the possibility that other brain areas may be involved as well. The reason behind the loss of extraretinal photoreception in mammals is uncertain. The shift to exclusive retinal photoreception in mammals may have been dictated by the extensive reorganization that occurred during the evolution of the mammalian brain. Or, perhaps, the increased size of the mammalian skull and overlying tissue made direct photoreception difficult and necessitated a shift to retinal photoreception. The persistence of extraretinal photoreceptors in submammalian vertebrates, however, underscores their importance in the sensory repertoire of vertebrates.  相似文献   

17.
The chick pineal gland exhibits circadian rhythms in melatonin synthesis under in vivo and in vitro conditions. A daily rhythm of melatonin production was first detectable in pineal glands isolated from chick embryos at embryonic day 16 and incubated under a LD cycle. All pineal glands isolated from 17-day-old and older embryos were rhythmic while no gland isolated at embryonic day 14 and 15 exhibited a daily rhythm in melatonin synthesis. Melatonin production in static cultures of embryonic pineal cells was rhythmic over 48 h if the cells were kept under a LD cycle. When embryonic pineal cells were incubated in constant darkness the rhythm in melatonin production was damped within 48 h. These results suggest that chick pineal cells from embryonic day 16 onwards are photosensitive but that the endogenous component of the melatonin rhythm is not completely developed at that age. A soluble analogue of cAMP stimulated and norepinephrine inhibited melatonin synthesis in cultured embryonic pineal cells. These findings indicate that the stimulatory and inhibitory pathways controlling melatonin synthesis in the mature pineal gland are effective in pineal cells isolated from chick embryos at least 2 days before hatching.  相似文献   

18.
Summary Sham-pinealectomy, performed under different light conditions in newborn and adult rats, is followed by changes of pineal activity resulting in variations of melatonin content. The pineal glands of rats sham-operated under white light produce significantly less melatonin. In contrast, glands of rats operated on under red light show a melatonin content corresponding to that of intact rats. This result implies that normal white light causes a disturbance in melatonin production by a non-retinal pathway.  相似文献   

19.
Melatonin: presence and formation in invertebrates   总被引:6,自引:0,他引:6  
In vertebrates, it is now clearly demonstrated that the pineal gland is implicated in conveying photoperiodic information via the daily pattern of melatonin secretion. Invertebrates, like vertebrates, use photoperiodic changes as a temporal cue to initiate physiological processes such as reproduction or diapause. How this information is integrated in invertebrates remains an unsolved question. Our review will be an attempt to evaluate the possible role of melatonin in conveying photoperiodic information in invertebrates. It is now well demonstrated in both vertebrates and invertebrates that melatonin as well as its precursors or synthesizing enzymes are present in various organs implicated in photoreceptive processes or in circadian pacemaking. Melatonin, serotonin or N-acetyltransferase have been found in the head, the eyes, the optic lobe and the brain of various invertebrate species. In some species it has also been shown that melatonin is produced rhythmically with high concentrations reached during the dark period. Moreover, the physiological effects of melatonin on various periodic processes such as rhythmic contractions in coelenterates, fissioning of asexual planarians or reproductive events in flies have been reported in the literature. All these results support the hypothesis (refs 36, 37) that melatonin is not solely a pineal hormone but that it may be an evolutionary conservative molecule principally involved in the transduction of photoperiodic information in all living organisms.  相似文献   

20.
Bright light (2000-3000 lux) of sufficient intensity to suppress human melatonin secretion, acts as a strong zeitgeber in the entrainment of circadian rhythms in man. In polar conditions, light of this intensity is not experienced for several weeks during the winter. The entrainment of human circadian rhythms, in particular that of melatonin, is clearly of interest in these circumstances. Urinary 6-hydroxy melatonin sulphate (aMT6s) is a good index of melatonin secretion in man. In a limited study of seven male volunteers living on an Antarctic base the overall 24-h rhythm of aMT6s excretion was maintained at four different times of year (spring, summer, autumn and winter) and no significant seasonal effects were noted. Cortisol excretion, appeared to be markedly affected by the season although other factors such as social and environmental stress cannot be discounted. These observations suggest that in the absence of a strong light-dark cycle melatonin production may be entrained by other factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号