首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
将麻纤维用含氮、磷、卤的无机阻燃化合物处理,所得阻燃纤维采用热分析、锥形量热分析、红外光谱研究其热解行为,用氧指数、剩碳率、热释放速率和有效燃烧热等参数表征它的阻燃性能,并用Broido方程计算麻纤维的动力学参数热解活化能的变化。通过比较未处理麻纤维和阻燃麻纤维的热解行为、阻燃性能及热解反应活化能的变化,初步探讨无机阻燃化合物处理麻纤维的阻燃机理。  相似文献   

2.
阻燃木材热降解及阻燃机理的研究   总被引:5,自引:0,他引:5  
将木材用无机硼化物及含磷化合物进行阻燃处理,所得阻燃木材采用热分析、锥形量热分析研究其热解行为,用氧指数、剩碳率、热释放速率和有效燃烧热等参数表征它的阻燃性能,并用Broido方程计算木材的动力学参数热解活化能的变化。通过比较未处理木材和硼化物、含磷化合物处理木材的热解行为、阻燃性能及热解活化能的变化,初步探讨硼化物及含磷化合物处理木材的阻燃机理。  相似文献   

3.
本文选取目前使用较多的DBDPE/Sb2O3(3:1)阻燃体系,制备了HB级和V-0级阻燃ABS复合材料,并对纯ABS和不同阻燃级别ABS的热解性能和燃烧性能进行了研究。结果表明:DBDPE/Sb2O3(3:1)阻燃体系可以增加样品的成炭量,有效减低ABS材料的最大热释放,但是总的热释放按添加百分比来说却没有降低。  相似文献   

4.
采用熔融共混法制备出EVA(乙烯-醋酸乙烯共聚物)/无卤阻燃共聚聚酯共混物,通过力学性能、差示扫描量热仪(DSC)、极限氧指数(LOI)和扫描电镜(SEM)分析了共混物的相容性、阻燃性和相结构.结果表明:EVA/无卤阻燃共聚聚酯共混物为不相容体系,EVA为连续相,无卤阻燃共聚聚酯是分散相;无卤阻燃共聚聚酯的加入可明显改善共混物的加工流动性和阻燃性;母粒法、多次熔融挤出和添加15%的相容剂都能使EVA与无卤阻燃共聚聚酯两相之间形成一定厚度的界面层,从而提高了共混物的力学性能.  相似文献   

5.
乙烯基酯树脂(VER)因其具有良好耐腐蚀性能和优异的物理性能被广泛应用于诸多领域,然而由于VER极易燃,限制了其使用范围.为了提高VER的阻燃性,本文将聚磷酸铵(APP)作为阻燃剂引入VER中,制备得到阻燃乙烯基酯树脂固化物;采用热重分析仪(TGA)表征了VER的热稳定性;扫描电子显微镜(SEM、SEM-EDX)研究了VER燃烧后残炭的微观形貌,表面元素组成及分布;利用极限氧指数(LOI)、垂直燃烧测试(UL-94)、锥形量热(CCT)对其阻燃性能进行测试;采用热重红外光谱联用仪(TG-FTIR)等手段分析APP在VER中的阻燃机理.研究结果表明,当APP的引入量为30 wt%时,乙烯基酯树脂的极限氧指数达到30.3%,通过UL-94 V-0级别. APP在凝聚相和气相中共同发挥阻燃作用.  相似文献   

6.
研究了两组分的共聚酯PECT(聚对苯二甲酸乙二醇-1,4-环己基二甲醇酯)的流变性能。结果表明,ETCT共聚酯的熔体属于非牛顿流体,呈现典型的切力变稀行为。共聚酯的剪切应力随剪切速率的提高而增加,随着温度的提高,剪切应力有所下降。共聚酯熔体粘度随CT链段的引入及含量的增加而上升,同时也随温度的升高而降低。共聚酯熔体的粘流活化能均大于常规PET,加入第二组份的量越大,共聚酯粘流活化能、表观粘度上升越明显。共聚酯熔体的非牛顿指数n值均低于常规PET,且随温度的升高而增大。考查温度和剪切速率等流变参数对共聚酯流变性能的影响,可以在加工过程中合理地控制工艺,对工艺条件的设定有很好的指导作用。  相似文献   

7.
为了研究阻燃共聚酯(flame retardant co-polyesters,FRPET)固相缩聚(solid state polymerization,SSP)反应过程中的结构变化,特别是结晶变化以及结构与反应动力学的关系,对SSP进程中不同反应时间的聚酯样品的特性黏度及端羧基含量进行了测试,并通过X-射线衍射、差...  相似文献   

8.
利用正交实验法研究了对苯二甲酸、乙二醇和阻燃单体HPPPA三元共聚体系的反应规律,确定了缩聚反应的最优反应条件,通过对产物阻燃性能、热稳定性以及流变性能的研究,发现产物具有良好的综合性能。  相似文献   

9.
废轮胎的热解行为   总被引:1,自引:0,他引:1  
考察温度、颗粒度等热解条件对废轮胎热解行为的影响。采用程序升温热天平仪考察温度、颗粒度对废轮胎热失重的影响;采用管式反应器考察温度、颗粒度对热解产品(包括热解气、热解油和粗炭黑)收率的影响。实验表明:温度是影响废轮胎热解产品收率的关键因素,400~550℃时热解失重速率最快,超过550℃接近完全热解;若废轮胎热解以得到热解油为目的,温度控制在400~500℃时,热解油产率最高。颗粒大小也是影响产品收率的重要因素,在400~550℃,随着颗粒度的增加废轮胎热解更加完全,粒径为0.3mm和5.0mm的废轮胎颗粒热解活化能分别为73.1kJ/mol和55.8kJ/mol;颗粒度对产品收率的影响也很大,而当颗粒度超过5mm时对热解产品的影响较小。  相似文献   

10.
本文研究了含溴阻燃剂阻燃的聚烯烃。氧指数测定表明,聚烯烃的结构对溴阻燃剂的阻燃效果有显著影响。对比阻燃聚烯烃和非阻燃聚烯烃的裂解产物,发现阻燃聚烯烃的裂解产物中,烷烃的浓度增大,烯烃的浓度降低。据此讨论了卤素的氢转移阻燃作用机理。  相似文献   

11.
本文使用氯化铵、硫酸铵、尿素三种阻燃配方分别对装饰织物进行阻燃处理,并对各阻燃样品进行热重实验,得到各样品的TG曲线和DTG曲线。通过对TG曲线和TDG曲线进行分析,比较各项参数,找出阻燃效果最好的阻燃方案。  相似文献   

12.
热致液晶PET—PHB共聚酯增韧改性环氧树脂   总被引:5,自引:0,他引:5  
采用熔融共混方法,用热致液晶PET-PHB共聚酯对环氧树脂进行增韧改性,并研究了共混体系的力学性能。借助扫描电镜,对材料断裂面的动态结构进行了分析,探讨了体系的形态结构与冲击性能之间的关系。研究结果表明,改性材料的弹性模量高于纯环氧树脂,其冲击强度及拉伸强度均有大幅度提高。当PET-PHB共聚酯的加入量为10%时,环氧改性材料的拉伸强度及冲击强度均为最大值。此时,改性材料的断面形态呈微观网络分布,明显不同于未改性环氧树脂脆性断裂的台阶型结构。  相似文献   

13.
阻燃是一种燃速非常低的特殊燃烧过程。本文根据燃烧的基本原理讨论了阻燃材料的阻燃机理,建立了物理模型和数字模型,并提出了用阻燃系数来表示阻燃材料的阻燃能力。 k=1/r k——阻燃系数 r——阻燃材料的燃烧速度阻燃系数愈大,阻燃效果愈好。  相似文献   

14.
以辛酸亚锡为催化剂,1,4,-丁二醇为引发剂,通过开环聚合,合成了双端为羟基,不同分子量、不同配比的(乙交酯-ε-己内酯)共聚酯。用红外、核磁、端基滴定、DSC等手段,对其组成、端基结构、分子量及热分析性能进行了测定,并进一步合成了以共聚酯为软段,4,4'-二苯甲烷二异氰酸酯1-4,-丁二醇链节为硬段的嵌段聚酯氨酯,进行了物性测定与体外降解试验,着重讨论了软段组成与分子量对嵌段聚酯性能的影响。  相似文献   

15.
废旧阻燃HIPS塑料的真空热解   总被引:1,自引:0,他引:1  
通过对含有十溴联苯醚阻燃剂(Decabromodiphenyl ether)的废旧电视外壳(红外分析鉴定为高抗冲聚苯乙烯,high impact polystyrene, HIPS)进行真空热裂解试验和动力学研究,总结了不同升温条件下(5K•min-1,10K•min-1,20K•min-1和40K•min-1)阻燃剂分解和塑料裂解的特征温度以及裂解条件对产品产率和分布的影响,同时讨论了样品在瞬态裂解和两级慢速升温条件下裂解行为的差异。结果表明,与瞬态升温方式相比,两级慢速升温热解方式更有利于溴代产物的选择性分布,同时可显著影响两段液体产品中主要产物的分布和产率。其中第二段液体产物中的甲苯,乙苯,苯乙烯,α-甲基苯乙烯和1,3-联苯丙烷等主要的芳香族化合物是化工原料和燃油的主要原料。  相似文献   

16.
本文用对苯二甲酸和对羟在苯甲酸为原料合成了液晶单体4,4‘-对苯二甲酰二氧二苯甲酰氯(TOBC),以此单体与不同分子量的聚乙二醇反应得到一系列的共聚酯。用DSC,热台偏光显微镜和X射线衍射仪对共聚酯的液晶性进行表征。结果表明,TOBC与不同聚合度的聚乙二醇形成的共聚酯,当乙氧基链节含≤60.73%时,即当聚乙二醇分子量小于600时,共聚酯呈液晶性,而高于此值则液晶性消失。  相似文献   

17.
为探索废塑料和煤共焦化工艺,采用溶液混合法制备了含聚乙烯(PE)的肥煤试样,并用热重分析方法研究了肥煤、PE废塑料及二者混合煤样的热解行为及其热解动力学特性。结果表明,混合煤样的热解反应主要发生在400~510℃。添加2%PE废塑料能改善肥煤的热解行为。随PE废塑料添加量的增加,热解活化能增大。  相似文献   

18.
本文用对苯二甲酸和对羟基苯甲酸为原料合成了液晶单体4,4′-对苯二甲酰二氧二苯甲酰氯(TOBC),以此单体与不同分子量的聚乙二醇反应得到一系列的共聚酯.用DSC、热台偏光显微镜和X射线衍射仪对共聚酯的液晶性进行了表征.结果表明,TOBC与不同聚合度的聚乙二醇形成的共聚酯,当乙氧基链节含量≤60.73%时,即当聚乙二醇分子量小于600时,共聚酯呈液晶性,而高于此值则液晶性消失.  相似文献   

19.
利用直接酯化法合成了一系列不同配比的PTT-PBT(简称PTBT)共聚酯.采用核磁共振(NMR)和固体13C-NMR研究了共聚酯的化学组成、序列结构和结晶性能.1H-NMR和13C-NMR表明:PTBT为无规嵌段聚合物,而且共聚酯链段中PBT链段的实际含量都要小于投料比,可能归因于生成四氢呋喃的副反应消耗了部分丁二醇.共聚酯中各链段的序列长度与其含量成正比,即含量高的组份具有更长的平均序列长度,但PTT序列长度较短,PTT链段比PBT链段更倾向于发生交替反应.固体13C-NMR表明:PTBT共聚酯结晶主要是富集相对应的链段参与完成.  相似文献   

20.
采用偏苯三甲酸酐与1,6-己二胺制备了N,N′-忆(1,6)二烷基-双偏苯三甲酸酰亚胺,并以上二酸与4,4′-二羟基二苯酮、对羟基苯甲酸、对苯二甲酸经直接熔融缩聚合成了系列共聚酯,所得聚合物经偏光显微镜、差示扫描量热计、广角X-射线衍射仪表征具有向列型液晶特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号