首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
含微量添加剂的AgSnO2触头材料电弧侵蚀机理   总被引:9,自引:0,他引:9  
针对具有不同微量添加剂(WO3,Bi2O3,In2O3)的AgSnO2触头材料进行了大量分断电弧侵蚀试验和表面微观测试分析.在此基础上,从添加剂的助润湿性、添加剂对熔融液态银粘滞性的影响、添加剂的热稳定性等方面,研究了添加剂对AgSnO2触头材料电弧侵蚀机理及侵蚀表面形貌特征的影响.  相似文献   

2.
电弧力对触头表面形貌特征的影响   总被引:1,自引:1,他引:0  
根据触头材料电弧侵蚀的开断实验及实验后触头表面的微观分析,发现触头表面电弧侵蚀形貌特征与电弧力有直接关系。通过进一步研究,提出了电弧力是导致液态金属流动和形成液态喷溅状、斑点状形貌特征的主要原因,并进行了深入的理论分析。  相似文献   

3.
分断电弧对触头材料侵蚀的研究   总被引:3,自引:0,他引:3  
本文主要研究电流在200A以下,银基材料的触头在分断电弧作用下的侵蚀机理和规律。为此进行了对称配对和非对称配对触头分断正弦半波和交流电流的试验研究.根据电弧和电接触理论,结合试验结果,分析了影响材料侵蚀的各因素,得出材料侵蚀是电弧、电极和环境三方面的热——力效应的结果.显著材料转移的原因主要是两电极上侵蚀率和迁移率的不对称,在不同条件下可有多种材料转移分量,同时还存在电极特性影响电弧的多种作用.本文提出了有电极喷流时的几种侵蚀模式和分断时的模式简图.探讨了电极材料液态喷溅机理和发生喷溅的条件,提出存在中心和边缘两种喷溅形式。本文还推导了电极喷流的近似计算公式.  相似文献   

4.
电弧对银金属氧化物(AgMeO)触头的熔炼和侵蚀特性   总被引:7,自引:0,他引:7  
在快速试验机上对AgCdO和AgSnO2触头材料进行了大量分断电弧侵蚀试验.利用扫描电镜(SEM)对熔层表面进行微观测试,并且利用能量扩散式X射线衍射仪(EDAX)对熔层表面进行成份分析、研究了熔层表面的微观组织结构,分析了触头气孔的形成机理和裂纹的产生原因与抑制途径,探讨了触头的耐电弧侵蚀能力与熔层组织结构的关系.研究发现,随着电弧作用次数的增加,银基触头材料熔层组织结构经历调整态和准稳定态两个阶段,准稳定态阶段中Ag与第二相组元的含量比例稳定在一定范围.  相似文献   

5.
CuCr50触头合金大电流分断相变层的显微组织控制   总被引:1,自引:0,他引:1  
观察了真空灭弧室分断大电流后CuCr50触头材料的表面熔化层的形貌和显微组织特点,建立了分断过程中触头表面温度场数值计算模型.结果表明:触头材料在分断大电流过程中表面形貌和显微组织发生了显著的变化;数值计算显示电流过零时刻触头表面仍保持较高的温度,此时的耐电压强度是能否成功分断的主要因素.由此提出了提高触头材料分断大电流能力的措施  相似文献   

6.
开关电弧材料侵蚀研究   总被引:3,自引:0,他引:3  
根据电接触与电弧理沦,对开关电器常用的银基触头材料的电弧侵蚀现象做了试验研究,通过对试验后触头表面的微观分析得出了一些有参考意义的结论.  相似文献   

7.
利用研制的小容量ASTM触头模拟动作与电性能测试系统,在直流14V、10A、灯负载条件下,对采用雾化法、混粉法和化学法3种制备工艺,添加WO3、Bi2O3、CuO与In2O3微量添加剂的8种Ag/SnO2触头材料,分别进行了45,000次连续通断试验.期间测量了8种Ag/SnO2触头材料的质量、燃弧能量、熔焊力、燃弧时间、触头温度和接触电阻,用SEM和EDAX测量与分析了8种Ag/SnO2触头材料的表面形貌与微区组份,对比分析了直流电弧对继电器环境下采用不同制备工艺和微量添加剂的Ag/SnO2触头材料的侵蚀性能.  相似文献   

8.
以CuO和La2O3为掺杂剂,采用高能球磨法制备掺杂纳米SnO2粉体,再采用热挤压工艺制成银含量88%的纳米掺杂Ag/SnO2触头材料,利用扫描电子显微镜、电导率测试仪、显微硬度计对该触头材料进行了微观组织表征及性能测试,随后,利用该触头材料在10A交流电流条件下进行电弧侵蚀性能测试.结果表明,触头材料中氧化物在银基体上分布均匀;Ag/SnO2触头材料的密度、硬度和电导率分别为9.704 1g/cm^3,104.2和75;电弧烧蚀速率为103.65μg/C,并研究了熔层表面的微观组织结构.  相似文献   

9.
DZ10-100安培空气开关类所用触头材料如粉未冶金银-钨合金。它具育耐电弧、迁移小、熔焊趋势小,导电性好等特性。但由于材料中的钨易氧化,在电弧高温中触头表面易形成复杂的氧化物,使接触电阻增加,接触电阻的稳定性降低,触头温升值增高,从而降低了开关电寿命和极限分断能力。  相似文献   

10.
3D C/C复合材料的电弧驻点烧蚀及机理分析   总被引:1,自引:0,他引:1  
采用电弧驻点烧蚀试验方法,测试细编穿刺毡增强体C/C复合材料的烧蚀率,并采用电子扫描显微镜观察烧蚀表面形貌。研究结果表明:在电弧驻点烧蚀试验条件下,3D C/C复合材料具有较好的烧蚀性能;C/C复合材料的烧蚀过程主要受热化学烧蚀和机械剥蚀2种烧蚀机制的共同作用,二者相互促进,以机械剥蚀为主;微观烧蚀形貌主要由热化学化蚀导致,宏观烧蚀形貌则主要是机械剥蚀所致。  相似文献   

11.
Effect of roughness and wettability of silicon wafer in cavitation erosion   总被引:1,自引:0,他引:1  
Material damage of silicon wafer with different roughness and wettability was investigated by using the self-made vibration cavitation apparatus in de-ionized water. Various roughness and wettability of silicon wafer were achieved by changing their morphology and depositing Au, diamond-like carbon films (DLC films) on them. Surface morphology was observed with a scanning electron microscope (SEM) and a surface profilometer, and wettability was characterized by the contact angle measurement. The cavitation erosion results showed that many tiny pits and cracks appeared on the wafer surface as a result of brittle fractures; the number and size of the pits and cracks increased with experiment time, which made material flake away finally; cavitation occurred more easily on the silicon wafer surface with the augment of roughness or contact angle by changing surface morphology or depositing Au, DLC thin film on it, which consequently aggravated cavitation damage.  相似文献   

12.
研究了继电器触点寿命试验过程中燃弧时间与操作次数间的时序关系,指出熔焊现象的发生具有随机性和突发性,在发生熔焊现象之前,触点燃弧时间仍相对稳定,没有呈现逐步递增或递减的趋势.试验研究还发现,分断过程会造成熔焊,且分断熔焊强度可能高于闭合熔焊强度,其主要原因在于前者是触点分离过程中存在弹跳电弧;后者是触点闭合过程中会发生动静触点间的滑动磨擦,使部分焊点断裂而减小熔焊力.  相似文献   

13.
为研究过盈装配对圆弧齿轮加工的影响,文中建立了圆弧齿轮端面坐标的数学模型.通过圆弧齿形的端面坐标,获得圆弧齿轮螺旋面方程,并以此为基础,分析齿轮与轴过盈配合所产生的接触应力和接触变形,求解出接触面允许的最大过盈量和最大接触应力.通过齿轮的变形,研究过盈配合对圆弧齿轮加工的影响.通过模拟球头铣刀加工圆弧齿形的过程,分析过盈变形对齿形加工的影响,对今后圆弧齿轮的加工以及过盈量的选择提供理论支持.   相似文献   

14.
焊接电弧的三维外特性控制研究   总被引:2,自引:0,他引:2  
传统的固定外特性电源对焊接电弧的控制常难于达到最佳效果。为此,提出了三维外特性的概念,并对其进行了数学描述。在此基础上,分析了弧焊电源系统必须满足的两个必要条件,并设计了微机控制的绝缘栅双极型晶体管(IGBT)逆变电源,该电源可通过分析电弧状态及焊接工艺要求实时调整其输出,实现了焊接电弧的三维外特性控制。实验表明,三维外特性控制用于CO2焊接时减少了飞溅,改善了焊缝成形,用于纤维素焊条全位置焊时,解决了断弧和熄弧难题。  相似文献   

15.
With the advantages of high deposition rate and large deposition area, polycrystalline diamond films prepared by direct current (DC) arc jet chemical vapor deposition (CVD) are considered to be one of the most promising materials for high-frequency and high-power electronic devices. In this paper, high-quality self-standing polycrystalline diamond films with the diameter of 100 mm were prepared by DC arc jet CVD, and then, the p-type surface conductive layer with the sheet carrier density of 1011-1013 cm?2 on the H-terminated diamond film was obtained by micro-wave hydrogen plasma treatment for 40 min. Ti/Au and Au films were deposited on the H-terminated diamond surface as the ohmic contact electrode, respectively, afterwards, they were treated by rapid vacuum annealing at different temperatures. The properties of these two types of ohmic contacts were investigated by measuring the specific contact resistance using the transmission line method (TLM). Due to the formation of Ti-related carbide at high temperature, the specific contact resistance of Ti/Au contact gradually decreases to 9.95 × 10?5 Ω·cm2 as the temperature increases to 820℃. However, when the annealing temperature reaches 850℃, the ohmic contact for Ti/Au is degraded significantly due to the strong diffusion and reaction between Ti and Au. As for the as-deposited Au contact, it shows an ohmic contact. After annealing treatment at 550℃, low specific contact resistance was detected for Au contact, which is derived from the enhancement of interdiffusion between Au and diamond films.  相似文献   

16.
在拉伸载荷的作用下,以Paris公式为基础,考虑几何修正系数f与裂纹尺寸a的内在关系,结合分段数值积分方法计算抽油杆裂纹扩展寿命,并应用Monte Carlo法计算不同类型表面裂纹扩展寿命可靠度.计算结果表明,在其他条件相同情况下,把裂纹处理为受深度比、纵横比两个参数控制的椭圆裂纹比仅受深度比控制的圆弧裂纹和直裂纹适应性更强;带有环形裂纹的抽油杆最先断裂;断裂力学中将各个参数作为确定值计算得到的临界裂纹扩展寿命不够准确,可能导致部分抽油杆还未达到临界裂纹扩展寿命就发生断裂.  相似文献   

17.
采用水热腐蚀技术制备的铁钝化多孔硅表面具有可调超结构。详细研究了铁钝化多孔硅水热制备过程中单晶硅片表面的形貌演化。结果表明,在水热腐蚀过程中,存在两种同时发生的腐蚀机制:即对缺陷的化学腐蚀和通过形成微电池所发生的电化学腐蚀。在腐蚀发生的初期,化学腐蚀占主导地位;随后电化学腐蚀逐步起主导作用并对铁钝化多孔硅表面超结构的最终形成起关键作用。还讨论了发生在徽电池中微型阳极和微型阴极上的化学反应。研究结果为实现铁钝化多孔硅表面形貌的人为控制提供理论指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号