首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
基于ANSYS Fluent软件,对微通道内气体在不同压力驱动下的流动做参数化数值模拟分析,得出不同克努森数(Kn)的通道出口截面速度分布图和质量流率,并将仿真结果和理论研究进行比较,分析微通道内气体流动特性与宏观流动的异同,研究稀薄气体效应.模拟结果表明:在微通道中,连续介质假设失效;当微系统特征尺度很小或者工作压力很小时,微通道内的气体具有较大的Kn,出现明显的稀薄气体效应;Kn越大,稀薄气体效应越强烈;稀薄气体效应导致固壁边界的滑移速度和质量流率变大.  相似文献   

2.
基于Enskog稠密气体理论,通过考察密度对气体物性及流动特性的影响,分析了微气体流动与稀薄气体流动相似性成立的条件.结果显示,若微气体流动中需要考虑稠密性对气体物性和宏观流动参数的影响时,表征微气体流动和稀薄气体流动的3个量纲一的特征数(Kn、Re和Ma)不可能同时对应相等,两种流动不可能相似.研究了稠密性对徽气体流动特性和输运系数的影响,同时,分别以基于稠密气体理论的声速相对偏差小于5%和基于热力学分析的压力相对偏差小于0.5%为限,计算得出各种气体在两种流动相似性失效时的密度值.  相似文献   

3.
含人为粗糙元微小冷却通道内的流动与换热   总被引:1,自引:0,他引:1  
针对液体火箭发动机再生冷却中的结焦问题,对含粗糙元微小冷却通道内的流动和换热进行数值研究.相对无粗糙元通道,粗糙元能获得3%的换热强化,并使流动阻力增加12%.粗糙元的存在增加了2个热侧壁附近的对流强度和热底壁附近流动的法向速度,提高了流动的湍流脉动,因而强化了换热.研究发现无粗糙元通道出口截面最高温度为330 K, 与最低温度相差36 K, 而含粗糙元通道出口截面最高温度只有312 K, 和最低温度相差14 K. 可见引入粗糙元能够大大改善局部热集中,有利于防止冷却剂的结焦.  相似文献   

4.
格子-Boltzmann方法的迅速发展为计算流体力学提供了一种强有力的工具.结合“贴壁层”的理论对格子—Boltzmann方程在微槽道流动中的应用进行探索,对Kn数跨越速度滑移区和过渡区的若3个微通道中的气体流体进行了模拟,给出了通道内速度、压力、局部阻力系数的变化曲线,并和同条件下用不考虑滑移的计算结果和文献给出的理论结果进行了对比,结果表明和文献给出的理论结果吻合得很好.  相似文献   

5.
矩形微通道内滑移区气体流动换热的数值模拟   总被引:3,自引:0,他引:3  
在等壁温边界条件下对矩形微细通道速度滑移区的对流换热进行了二维数值模拟、在一阶速度滑移和温度跳跃的边界条件下,计算出了通道内的速度和温度以及压力分布。比较了不同克努森数Kn对于滑移速度和跳跃温度的影响。结果表明,由于气体的稀薄性,压力呈现更加线性化减小的趋势,随着Kn的增加,通道入口与出口处的滑移速度和跳跃温度至现增加的趋势。在通道入口附近,气流速度和温度变化剧烈,而在出口处截面平均流速和温度随加的增加而降低.  相似文献   

6.
通过隐式格子波尔兹曼方程,并采用壁面平衡边界条件以及二阶关系,模拟了微通道气体流动中的非线性压力和壁面滑移速度,模拟结果与Arkilic的解析结果十分吻合,验证了格子波尔兹曼方法在滑移流区的有效性。  相似文献   

7.
旋转矩形通道内湍流流动与换热的直接数值模拟   总被引:2,自引:2,他引:0  
对旋转矩形通道内的湍流流动和换热进行了直接数值模拟.非稳态N-S方程的空间离散采用二阶中心差分法,时间推进采用二阶显式Adams-Bashforth格式.分析了旋转对通道截面上主流平均速度、截面流速以及截面平均温度的影响,结果表明:在不考虑离心力的作用时,随旋转数的增大,管道截面的平均速度减小,平均湍动能减小,与静止时相比,旋转数为1.5时平均湍动能减小了33%;在考虑离心力的影响时,对于径向旋转轴向出流,平均速度增大,平均湍动能增大,而对于径向旋转轴向入流,结果相反.在旋转数为1.5时,与不考虑浮升力相比,对于径向旋转轴向出流,平均湍动能增大了17%,而对于径向旋转轴向入流,平均湍动能减小了43%.  相似文献   

8.
基于贴壁层概念和已经求得的贴壁层内气体粘性系数变化规律 ,建立了数理模型 ,求解了矩形微小通道内气体流速分布完全发展的层流流动 ,得到了不同截面高宽比 ξ和不同 Knudsen数下的量纲一速度分布和流动阻力因数 ,并对结果进行了分析 ,为进一步研究不可压气流在微小矩形道内的层流换热提供了分析基础  相似文献   

9.
直接模拟蒙特卡罗方法(DSMC)通过计算机跟踪仿真分子的运动,求解稀薄气体流动规律.选用硬球模型模拟仿真分子间的碰撞,编写DSMC的计算程序,模拟处于滑流和过渡流动领域的二维微槽道内气体流动.结果表明,气体流动在边界附近出现速度滑移和温度跳跃.计算结果和理论值相吻合.  相似文献   

10.
应用BGK格式数值模拟微槽道中的气体流动   总被引:1,自引:0,他引:1  
基于BGK-Boltzmann模型方程的气体运动论数值算法,对不同Knudsen数下、压力驱动的二维微槽道流动进行了数值模拟,目的在于将BGK格式拓展应用于对微流动(常密度、流动Kn较大)的数值计算。通过BGK数值模拟结果与N-S方程加滑移边界修正的解析解以及MonteCarlo直接数值模拟(DSMC)结果的对比,揭示了BGK方法具有模拟结果良好并且计算经济的特点;结合以前的工作,可初步认为BGK在解决Knudsen数相对较大(0.1相似文献   

11.
蓄热式换热器流动传热的数值模拟   总被引:3,自引:0,他引:3  
以炼铁厂的蓄热式热风炉为例,根据热风炉的实际运行状况对热风炉内的流动与换热过程进行合理简化,应用二维模型,采用有限容积法对热风炉内的流动与换热情况进行数值求解,得到了热风炉在不同工况下的气体温度与蓄热体温度的分布情况,模拟计算结果表明:在内燃式热风炉蓄热体中气体的温度分布大致为对数曲线,并且在热风炉中同一高度上气体与蓄热体温差较小,与实际情况相符,这对优化热风炉的运行与设计有参考价值。  相似文献   

12.
粗糙多孔保温层内部的热质耦合传递过程广泛存在于能源利用、机械隔热等工程中,为了更加真实地体现该热质耦合传递过程,将粗糙的孔隙通道描述为短周期正弦变化的毛细管道,根据达西定律、能量守恒定律和牛顿冷却定律,同时考虑粗糙度和粗糙密集度两个影响因素,提出了粗糙毛细管道的渗流系数和对流换热系数模型,分析了粗糙表面对渗流系数和对流换热系数的影响。结果表明,渗流系数模型的理论预测值与实验数据相吻合;渗流系数与面积分形维数、粗糙密集度呈正相关,与迂曲分形维数、粗糙度呈负相关;对流换热系数与渗流系数、粗糙度和粗糙密集度呈正相关,与面积分形维数、迂曲分形维数呈负相关。  相似文献   

13.
步进式加热炉内流动与传热过程的数值模拟   总被引:7,自引:0,他引:7  
建立了步进式加热炉内流动、燃烧和传热的数学模型.湍流模型采用κ-ε双方程模型,辐射换热计算采用六通量法,气相燃烧采用修正EBU模型,流场计算采用Simpler算法.采用上述模型与算法得到了炉内详细合理的温度、速度和浓度分布.  相似文献   

14.
提出了一种基于前沿推进法的平面区域三角化网格剖分方法 ,它具有算法简单、易于编程和浮点计算量少的特点 ,同时可以克服以往算法在角点处可能出现一个单元的3个节点全在边界上的缺点。剖分实例表明 :该方法的鲁棒性和普适性较好 ,剖分结果经过光滑后 ,可用于多连通域中传热和流动问题的控制容积积分法的求解。  相似文献   

15.
采暖炉是广泛使用的一种民用取暖兼炊事设备。研究采暖炉中的流动及传热规律 ,从而设计出高性能、安全的采暖炉有着重要的实用价值。该文对双孔采暖炉水套内的流动换热进行了数值模拟。采用三维变密度雷诺平均 Navier-Stokes方程和 SIMPL E算法 ,湍流模式为修正的 Spalart-Allmaras模式 ;通过修正水的热传导系数考虑沸腾汽化的影响 ;根据工程实际问题的特点 ,通过计算边界条件考虑与计算域边界耦合的热传导、对流换热及辐射传热过程。所得数值结果与实验符合很好  相似文献   

16.
针对矩形微通道进出口压降大、温度分布不均匀,以及分形微通道受到分形维数和分支数限制适用范围较窄的问题,结合矩形微通道和分形微通道的优势设计一种分-合式微通道散热器。使用Fluent软件对散热过程进行数值模拟,研究微通道内分支倾斜角度变化对流动和传热性能的影响。结果表明,在100 W/cm2的热流密度下,Re为970、分支倾斜角度为90°时,分-合式微通道平均温度降低了11.9 K,最高温度降低了14.2 K,Nu增加了85.7%,整体传热性能(PEC)也最佳,达到1.44。分支的引入可以增加微通道内部换热面积,同时形成新的边界层,在分支内侧产生漩涡,有效提高了微通道散热器的传热性能,为微通道的优化设计提供了新的理论依据。  相似文献   

17.
利用三维稳态模拟研究了叉排和顺排布置形式、几何尺寸和雷诺数ReD对双排平直翅片管换热器换热和流动特性的影响。研究结果表明:尾流区面积是影响换热量的主要因素,其原因是尾流区的风速很小,部分空气无法被主流带走,造成了空气和翅片间的温差很小,努塞尔数NuD接近零;顺排管换热器前排管的尾流区较宽,并与后排管的连接形成宽度为D的尾流通道,形成了比叉排管换热器大的尾流区面积,因而前者的换热效果比后者差。在几何参数中,翅片间距对换热量的影响最为显著,因为翅片间距较大时,管前和管侧会产生向下游移动的马蹄形漩涡,显著强化了换热;流动方向或垂直于流动方向的管间距的减小,会增大前排管尾流区对后排管的影响,从而恶化传热。  相似文献   

18.
长菱形微针肋热沉的流动与换热特性   总被引:3,自引:0,他引:3  
加工硅基长菱形微针肋热沉,并对其流动与换热性能进行试验研究和数值模拟。结果表明:在试验雷诺数Re范围内,长菱形针肋的换热系数随Re的增大而增大。雷诺数相同时,热流密度对换热系数的影响较小。热阻随泵功的增加不断降低;在泵功较小时,热阻降低的速度较快;当泵功增大到一定值时,热阻的变化趋于平缓。在一定的泵功下不同热流密度之间的总热阻没有太大的区别。努塞尔数Nu随Re增大而增大。与同样尺寸圆形、菱形针肋相比,长菱形针肋具有较好的换热性能,可以避免针肋尾部涡脱落造成的阻力损耗,同时长菱形针肋尾部延伸拓展了换热面积并扩大了固体导热区,从而提高换热效果。  相似文献   

19.
流体在螺旋管内对流换热和压降性能的数值模拟   总被引:2,自引:2,他引:0  
分别对螺旋椭圆管和螺旋扁管建模并进行数值模拟和理论分析,对比研究两种螺旋管道的流动换热性能及沿程换热情况,结果表明:层流范围内,螺旋扁管的换热性能好于螺旋椭圆管,但流动阻力较大,根据综合性能评价因子得知螺旋扁管较好;湍流范围内,螺旋椭圆管性能好于螺旋扁管.沿程换热情况表明螺旋管长约为0.5 m时换热效果最佳,同时螺旋管几何尺寸对换热性能也有影响.  相似文献   

20.
Based on the principle of field synergy for heat transfer enhancement, the concept of physical quantity synergy in the laminar flow field is proposed in the present study according to the physical mechanism of convective heat transfer between fluid and tube wall. The synergy regulation among physical quantities of fluid particle is revealed by establishing formulas reflecting the relation between synergy angles and heat transfer enhancement. The physical nature of enhancing heat transfer and reducing flow resistance, which is directly associated with synergy angles α,β,γ,φ,θ and ψ; is also explained. Besides, the principle of synergy among physical quantities is numerically verified by the calculation of heat transfer and flow in a thin cylinder-interpolated tube, which may guide the optimum design for better heat transfer unit and high-efficiency heat exchanger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号